Math, asked by aassemble4, 1 year ago

(x+1/x)^2 = 2(x+1/x)+3 solve this equation. [DO NOT SEND ANY OTHER MESSAGE ]​

Attachments:

Answers

Answered by praneethks
1

Step-by-step explanation:

Let (x+1/x) be y. So

 {y}^{2} = 2y + 3 =  >  {y}^{2} - 2y - 3 = 0 =  >

 {y}^{2} - 3y + y - 3 = 0 =  >

y(y -3) + 1(y - 3) = 0 =  >

(y + 1)(y - 3) = 0 =  > y =  - 1 \: or \: 3

if \: x +  \frac{1}{x} =  - 1 =  >  {x}^{2} + 1 =  - x =  >

 {x}^{2} + x + 1 = 0 =  > x =  \frac{ - 1 +  \sqrt{1 - 4} }{2} \: or \:

  \frac{- 1 -  \sqrt{1 - 4}}{2}

x = (-1+√-3)/2 and (-1-√-3)/2.

x +  \frac{1}{x} = 3 =  >  {x}^{2} + 1 = 3x =  >

 {x}^{2} -3x + 1 = 0 =  > x =  \frac{3 +  \sqrt{9 - 4} }{2}  \: or \:

 \frac{3 -  \sqrt{9 - 4} }{2} =  > x =  \frac{3 +  \sqrt{5} }{2} \: or \:  \frac{3 -  \sqrt{5} }{2}

Hope it helps you.

Similar questions