x+1/x=2 then x^5+1/x^5=?
(x+1/x=2 then x⁵+1/x⁵=?)
Answers
x + 1/x = 2 -------(1)
x² + 1/x² + 2 = 4
x² + 1/x² = 2 -------(2)
Doing Cube of eq. (1)
x³ + 1/x³ + 3(x + 1/x) = 8
x³ + 1/x³ + 3(2) = 8
x³ + 1/x³ + 6 = 8
x³ + 1/x³ = 2 -------(3)
From eq. (2) × eq.(3)
(x² + 1/x²) * (x³ + 1/x³) = 4
x⁵ + x + 1/x + 1/x⁵ = 4
x⁵ + (x + 1/x) + 1/x⁵ = 4
x⁵ + 1/x⁵ + 2 = 4
x⁵ + 1/x⁵ = 2
x+1/x=2 then x^5+1/x^5=?
(x+1/x=2 then x⁵+1/x⁵=?)
x + 1/x = 2 -------(1)
x² + 1/x² + 2 = 4
x² + 1/x² = 2 -------(2)
Doing Cube of eq. (1)
x³ + 1/x³ + 3(x + 1/x) = 8
x³ + 1/x³ + 3(2) = 8
x³ + 1/x³ + 6 = 8
x³ + 1/x³ = 2 -------(3)
From eq. (2) × eq.(3)
(x² + 1/x²) * (x³ + 1/x³) = 4
x⁵ + x + 1/x + 1/x⁵ = 4
x⁵ + (x + 1/x) + 1/x⁵ = 4
x⁵ + 1/x⁵ + 2 = 4
x⁵ + 1/x⁵ = 2