(x+1)(x+2)(x+3)(x+4)=120
Answers
Answered by
5
(x+1)(x+2)(x+3)(x+4)=120
=>(x+1)(x+4)(x+2)(x+3)=120
=>{x²+5x+4}{x²+5x+6}=120
Let x²+5x+4=A
=>A(A+2)=120
=>A²+2A=120
=>A²+2A-120=0
=>A²+12A-10A-120=0
=>A(A+12)-10(A+12)=0
=>(A-10)(A+12)=0
A=12,-10
WHEN A=12
x²+5x+4=12
=>x²+5x-8=0
x=-5±√(5)²-4(1)-8)/2×1
x=-5±√1/2
When a=-10
x²+5x+4=-10
=>x²+5x+14=0
x=-5±√(5)²-4(1)(14)/2
x=-5±√-31/2
=>(x+1)(x+4)(x+2)(x+3)=120
=>{x²+5x+4}{x²+5x+6}=120
Let x²+5x+4=A
=>A(A+2)=120
=>A²+2A=120
=>A²+2A-120=0
=>A²+12A-10A-120=0
=>A(A+12)-10(A+12)=0
=>(A-10)(A+12)=0
A=12,-10
WHEN A=12
x²+5x+4=12
=>x²+5x-8=0
x=-5±√(5)²-4(1)-8)/2×1
x=-5±√1/2
When a=-10
x²+5x+4=-10
=>x²+5x+14=0
x=-5±√(5)²-4(1)(14)/2
x=-5±√-31/2
arbind8:
thank you sis
Answered by
2
120=(x+1)(x+2)(x+3)(x+4)=((x+1)(x+4))((x+2)(x+3))120=(x+1)(x+2)(x+3)(x+4)=((x+1)(x+4))((x+2)(x+3))
=((x2+5x+5)−1)((x2+5x+5)+1)…(1)=((x2+5x+5)−1)((x2+5x+5)+1)…(1)
=(x2+5x+5)2−1=(x2+5x+5)2−1,
we get x2+5x+5=±11x2+5x+5=±11.
Thus x2+5x−6=0x2+5x−6=0 or x2+5x+16=0x2+5x+16=0. The first of these give x=1x=1 or x=−6x=−6. The second of these give x=12(−5±−39−−−−√)x=12(−5±−39).
It is easy to verify that x=1x=1 and x=−6x=−6 are both solutions; in fact, 120=2⋅3⋅4⋅5=(−5)⋅(−4)⋅(−3)⋅(−2)120=2⋅3⋅4⋅5=(−5)⋅(−4)⋅(−3)⋅(−2).
That the second pair of complex conjugates is also a solution can be best verified by replacing x2+5xx2+5x by −16−16 in eqn. (1)(1), say.
There are two real solutions, x=1x=1 and x=−6x=−6, and two non-real solutions x=12(−5±−39−−−−√)
if it is helpful then mark me as brainliest
Similar questions