Math, asked by tanushsoni15448, 1 month ago

x- 1/x=3 then x^3- 1/x^3=?​

Answers

Answered by amansharma264
7

EXPLANATION.

⇒ (x - 1/x) = 3.

As we know that,

Cube on both sides of the equation, we get.

⇒ (x - 1/x)³ = (3)³.

⇒ x³ - 3(x)²(1/x) + 3(x)(1/x)² - (1/x)³ = 27.

⇒ x³ - 3x + 3/x - 1/x³ = 27.

⇒ x³ - 1/x³ - 3x + 3/x = 27.

⇒ x³ - 1/x³ - 3(x - 1/x) = 27.

Put the value of (x - 1/x) = 3 in the equation, we get.

⇒ x³ - 1/x³ - 3(3) = 27.

⇒ x³ - 1/x³ - 9 = 27.

⇒ x³ - 1/x³ = 27 + 9.

⇒ x³ - 1/x³ = 36.

Answered by ItzGentleShiva
9

 \Huge \tt {\colorbox{black}{\color{white}{~~Answer :~~}}}

 \mapsto  (x-\frac{1}{x}) = 3

We know that,

  •  \leadsto Cube on both sides of the equation, we get;

 \implies (x - 1/x)³ = (3)³

 \implies x³ - 3(x)²(1/x) + 3(x)(1/x)² - (1/x)³ = 27

 \implies x³ - 3x + 3/x - 1/x³ = 27

 \implies x³ - 1/x³ - 3x + 3/x = 27

 \implies x³ - 1/x³ - 3(x - 1/x) = 27

  •  \leadsto Put the value of (x - 1/x) = 3 in the equation, we get;

 \implies x³ - 1/x³ - 3(3) = 27

 \implies x³ - 1/x³ - 9 = 27

 \implies x³ - 1/x³ = 27 + 9

 \implies x³ - 1/x³ = 36

Similar questions