x- 1/x=3 then x^3- 1/x^3=?
Answers
Answered by
7
EXPLANATION.
⇒ (x - 1/x) = 3.
As we know that,
Cube on both sides of the equation, we get.
⇒ (x - 1/x)³ = (3)³.
⇒ x³ - 3(x)²(1/x) + 3(x)(1/x)² - (1/x)³ = 27.
⇒ x³ - 3x + 3/x - 1/x³ = 27.
⇒ x³ - 1/x³ - 3x + 3/x = 27.
⇒ x³ - 1/x³ - 3(x - 1/x) = 27.
Put the value of (x - 1/x) = 3 in the equation, we get.
⇒ x³ - 1/x³ - 3(3) = 27.
⇒ x³ - 1/x³ - 9 = 27.
⇒ x³ - 1/x³ = 27 + 9.
⇒ x³ - 1/x³ = 36.
Answered by
9
We know that,
- Cube on both sides of the equation, we get;
(x - 1/x)³ = (3)³
x³ - 3(x)²(1/x) + 3(x)(1/x)² - (1/x)³ = 27
x³ - 3x + 3/x - 1/x³ = 27
x³ - 1/x³ - 3x + 3/x = 27
x³ - 1/x³ - 3(x - 1/x) = 27
- Put the value of (x - 1/x) = 3 in the equation, we get;
x³ - 1/x³ - 3(3) = 27
x³ - 1/x³ - 9 = 27
x³ - 1/x³ = 27 + 9
x³ - 1/x³ = 36
Similar questions