x+1/x=3 then x^5+1/x^5=?
Answers
Answered by
9
Heya !!
Here's your answer.. ⬇⬇
____________________________
______________________________
Hope it helps..
Thanks :)
Here's your answer.. ⬇⬇
____________________________
______________________________
Hope it helps..
Thanks :)
Anonymous:
Good one sis :claps:
Answered by
10
HELLO DEAR,
given that:-
(x + 1/x) = 3
now,
on squaring both side,
(x + 1/x)² = 3²
⇒(x² + 1/x² + 2 * x * 1/x) = 9
∴ [ (a + b)² = (a² + b² + 2ab) ]
⇒(x² + 1/x²) = 9 - 2
now,
⇒(x + 1/x) = 3
∴ [ on cubing both side ]
⇒(x + 1/x)³ = 3³
⇒[ x³ + 1/x³ + 3*x*1/x(x + 1/x) = 27
∴ [ (a + b)³ = a³ + b³ + 3ab(a + b) ]
⇒x³ + 1/x³ + 3(3) = 27
∴ [ (x + 1/x) = 3 ]
⇒(x³ + 1/x³) = 27 - 9
⇒(x³ + 1/x³) = 18
∴ [ multiply Both side by (x + 1/x) ]
⇒(x³ + 1/x³)(x² + 1/x²) = 18(x² + 1/x²)
⇒(x³x² + x³/x² + x²/x³ + 1/x³ * 1/x²) = 18 * 7
⇒(x⁵ + x + 1/x + 1/x⁵) = 126
⇒(x + 1/x) + (x⁵ + 1/x⁵) = 126
∴ [ (x + 1/x) = 3]
⇒(x⁵ + 1/x⁵) = 126 - 3
⇒(x⁵ + 1/x⁵) = 123
I HOPE ITS HELP YOU DEAR,
THANKS
given that:-
(x + 1/x) = 3
now,
on squaring both side,
(x + 1/x)² = 3²
⇒(x² + 1/x² + 2 * x * 1/x) = 9
∴ [ (a + b)² = (a² + b² + 2ab) ]
⇒(x² + 1/x²) = 9 - 2
now,
⇒(x + 1/x) = 3
∴ [ on cubing both side ]
⇒(x + 1/x)³ = 3³
⇒[ x³ + 1/x³ + 3*x*1/x(x + 1/x) = 27
∴ [ (a + b)³ = a³ + b³ + 3ab(a + b) ]
⇒x³ + 1/x³ + 3(3) = 27
∴ [ (x + 1/x) = 3 ]
⇒(x³ + 1/x³) = 27 - 9
⇒(x³ + 1/x³) = 18
∴ [ multiply Both side by (x + 1/x) ]
⇒(x³ + 1/x³)(x² + 1/x²) = 18(x² + 1/x²)
⇒(x³x² + x³/x² + x²/x³ + 1/x³ * 1/x²) = 18 * 7
⇒(x⁵ + x + 1/x + 1/x⁵) = 126
⇒(x + 1/x) + (x⁵ + 1/x⁵) = 126
∴ [ (x + 1/x) = 3]
⇒(x⁵ + 1/x⁵) = 126 - 3
⇒(x⁵ + 1/x⁵) = 123
I HOPE ITS HELP YOU DEAR,
THANKS
Similar questions