Math, asked by jayesh8862, 1 year ago

x+1/x=3 then x^9+1/x9​

Answers

Answered by Anonymous
3

hey dear here is ur answer

x+1/x=3

x+1=3x

3x-x=1

2x=1

x=1/2


jayesh8862: yes
jayesh8862: It would become
jayesh8862: x^2-3x+1=0
jayesh8862: wait
Answered by payalchatterje
2

Answer:

Value of x^9+1/x9 is 5778.

Step-by-step explanation:

Given,

x +  \frac{1}{x}  = 3

Here we want to find

 {x}^{9}  +  \frac{1}{ {x}^{9} } =  {x}^{ {3}^{3} }  +  \frac{1}{ {x}^{ {3}^{3} } }  \\  =  ( {x}^{3} )^{3} +(  \frac{1}{ {x}^{3} } )^{3} \\  = ( {x}^{3}  +  \frac{1}{ {x}^{3} } )^{3} - 3 {x}^{3}  \times  \frac{1}{ {x}^{3} } ( {x}^{3}  +  \frac{1}{ {x}^{3} } ) \\  = ( {x}^{3}  +  \frac{1}{ {x}^{3} } )^{3} - 3 ( {x}^{3}  +  \frac{1}{ {x}^{3} } ) .....(1)

Now,

 {x}^{3}  +  \frac{1}{ {x}^{3} }  = (x +  \frac{1}{x} )^{3} - 3 \times x \times  \frac{1}{x} (x +  \frac{1}{x} ) \\  =  {(x +  \frac{1}{x} )}^{3}  - 3(x +  \frac{1}{x} )

We are putting value of x +  \frac{1}{x}  = 3

So,

 {x}^{3}  +  \frac{1}{ {x}^{3} } =  {3}^{3} - 3 \times 3 \\  = 27 - 9 \\  = 18

Now from (1),

( {x}^{3}  +  \frac{1}{ {x}^{3} } )^{3} - 3 ( {x}^{3}  +  \frac{1}{ {x}^{3} } )  \\  =  {18}^{3}  - 3 \times 18 \\  = 5832 - 54 \\  = 5778

So,

 {x}^{9}  +  \frac{1}{ {x}^{9} }  = 5778

Required value is

 {a}^{3}  +  {b}^{3}  =  {(a + b)}^{3}  - 3ab(a + b)

This is a problem of Algebra.

Some important Algebra formulas.

(a + b)² = a² + 2ab + b²

(a − b)² = a² − 2ab − b²

(a + b)³ = a³ + 3a²b + 3ab² + b³

(a - b)³ = a³ - 3a²b + 3ab² - b³

a³ + b³ = (a + b)³ − 3ab(a + b)

a³ - b³ = (a -b)³ + 3ab(a - b)

a² − b² = (a + b)(a − b)

a² + b² = (a + b)² − 2ab

a² + b² = (a − b)² + 2ab

a³ − b³ = (a − b)(a² + ab + b²)

a³ + b³ = (a + b)(a² − ab + b²)

Know more about Algebra,

1) https://brainly.in/question/13024124

2) https://brainly.in/question/1169549

Similar questions