Math, asked by bakopatel, 1 year ago

x+1/x=34, sqrt x + 1/sqrtx=?

Answers

Answered by brunoconti
0

Answer:

Step-by-step explanation:

BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST

Attachments:

sivaprasath: x + 1/x + 2 (or) - 2 ??
sivaprasath: sqrt{x} + 1/sqrt{x} = 6 , right ?
brunoconti: sorryyyyyyyyyyyy
brunoconti: NO it is Only 6 because sqrt(x) is ALWAYS positive.
brunoconti: it is updated now
brunoconti: thks för pointing out
sivaprasath: ok, bro
sivaprasath: Hmm, Your maths aryabhatta title is missing, brun ,bro
Answered by sivaprasath
1

Answer:

6

Step-by-step explanation:

Given :

x + \frac{1}{x} = 34

Then, find \sqrt{x} + \frac{1}{\sqrt{x}}

Solution :

We know that,.

⇒ (a + b)² = a² + 2ab + b²

__

(\sqrt{x} + \frac{1}{\sqrt{x}})^2 = (\sqrt{x} )^2 + 2(\sqrt{x} )(\frac{1}{\sqrt{x}}) + (\frac{1}{\sqrt{x}})^2

(\sqrt{x} + \frac{1}{\sqrt{x}})^2 = x + 2 + \frac{1}{x}

(\sqrt{x} + \frac{1}{\sqrt{x}})^2 = (x +\frac{1}{x}) + 2

(\sqrt{x} + \frac{1}{\sqrt{x}})^2 = (34) + 2

⇒  (\sqrt{x} + \frac{1}{\sqrt{x}})^2 = 36

\sqrt{x} + \frac{1}{\sqrt{x}} = \sqrt{36} = 6

Similar questions