Math, asked by jawaidsaman8301, 9 months ago

X+1/x=root 5 , find the value of x^3 +1/x^3

Answers

Answered by Anonymous
1

Given,

{x}+\frac{1}{x}=\sqrt{5}

Expanding :- {({x}+\frac{1}{x})}^{3}

{({x}+\frac{1}{x})}^{3} = {x}^{3} +\frac{1}{x}^{3} + 3({x}+\frac{1}{x})

\sqrt{5}^{3} = {x}^{3} +\frac{1}{x}^{3} + {3}\sqrt{5}

{5}\sqrt{5} - {3}\sqrt{5}= {x}^{3} +\frac{1}{x}^{3}

{5}\sqrt{5} - {3}\sqrt{5}= {x}^{3} +\frac{1}{x}^{3}

\huge{\boxed{\red{\bf{Answer:-}}}}

{x}^{3} +\frac{1}{x}^{3} ={2}\sqrt{5}

Answered by Anonymous
2

{\underline{\huge{\mathbf{\color{blue}{♡heya\:dost♡}}}}}

_________________________❤

Question :-

 if\: x + \frac{1}{x} = \sqrt 5

then find :-

 x^3 + \frac{1}{x^3}

formulae used :-

 ( x + \frac{1}{x})^3 = x^3 + \frac{1}{x^3} + 3 ( x + \frac{1}{x})

putting values :-

 ( x + \frac{1}{x})^3 = x^3 + \frac{1}{x^3} + 3 ( x + \frac{1}{x})

 (\sqrt5)^3 =  x^3 + \frac{1}{x^3} + 3(\sqrt5)

 5\sqrt5=  x^3 + \frac{1}{x^3} + 3\sqrt 5

 5\sqrt 5 - 3 \sqrt 3=  x^3 + \frac{1}{x^3}

  x^3 + \frac{1}{x^3} =2\sqrt 5

____________________❤

{\underline{\huge{\mathbf{\color{blue}{♡thank\:you♡}}}}}

Similar questions