Math, asked by sewarambidla11pa56rl, 1 year ago

(x+1/x)(x_1/x)(x^2+1/x^2)(x^4+1/x^4)

Answers

Answered by ag21dec1989pa7b0j
3
(x^2-1/x^2)(x^2+1/x^2)(x^4+1/x^4)

(x^4-1/x^4)(x^4+1/x^4)
(x^8+1/x^8)

sewarambidla11pa56rl: brilliant
Answered by HimanshuR
2

(x +  \frac{1}{x} )(x -  \frac{1}{x} )(x {}^{2}  +  \frac{1}{x {}^{2} } )(x {}^{4}  +   \frac{1}{x {}^{4} }) \\   =(  \: (x) {}^{2} -  ( \frac{1}{x}  {}^{2} ) \: )(x {}^{2}  +  \frac{1}{x {}^{2} } )(x {}^{4}  +  \frac{1}{x {}^{4} } ) \\  = (x {}^{2}  -  \frac{1}{x {}^{2} })(x {}^{2} +  \frac{1}{x {}^{2} }  )(x {}^{4}  +  \frac{1}{x {}^{4} }) \\  =( \:  (x {}^{2} )   {}^{2}  - ( \frac{1}{x {}^{2} }) {}^{2} \: )(x {}^{4}  +  \frac{1}{x {}^{4} } ) \\  = (x {}^{4}   -  \frac{1}{x {}^{4} } )(x {}^{4}  +  \frac{1}{x {}^{4} }) \\  = (\: ( x {}^{4}) { {}^{2} }  -  (\frac{1}{x {}^{ {}^{4} } }  ) {}^{2} \: ) \\  = x {}^{8} -  \frac{1}{x {}^{8} }

HimanshuR: mark as brainliest
Similar questions