(X-1/x)(x+1/x)(x×x-1/x×x)(x×x×x×x+1/x×x×x×x)
Attachments:
Answers
Answered by
11
(x^4+1/x^4)(x^2+1/x^2)(x+1/x)(x-1/x)
= (x^4+1/x^4)(x^2+1/x^2)(x^2-1/x^2)
let, x^2= a
so, (a^2+1/a^2)(a+1/a)(a-1/a)
= (a^2+1/a^2)(a^2-1/a^2)
let , a^2= b
so, (b+1/b)(b-1/b)
=b^2-1/b^2
= (a^2)^2-1/(a^2)^2
=a^4 -. 1/a^4
= (x^2)^4 - 1/(x^2)^4
= x^8 - 1/x^8
Answered by
7
Answer:
Step-by-step explanation:
(x^4+1/x^4)(x^2+1/x^2)(x+1/x)(x-1/x)
= (x^4+1/x^4)(x^2+1/x^2)(x^2-1/x^2)
let, x^2= a
so, (a^2+1/a^2)(a+1/a)(a-1/a)
= (a^2+1/a^2)(a^2-1/a^2)
let , a^2= b
so, (b+1/b)(b-1/b)
=b^2-1/b^2
= (a^2)^2-1/(a^2)^2
=a^4 -. 1/a^4
= (x^2)^4 - 1/(x^2)^4
= x^8 - 1/x^8
Similar questions