Math, asked by TbiaSupreme, 1 year ago

x√1-y²+y√1-x² =a, | x | <1 , | y | < 1,Find dy/dx for the given function y wherever defined

Answers

Answered by gangwarakash999
4
Hope it helps you...

please mark me as brainliest....
Attachments:
Answered by abhi178
0
Given, x\sqrt{1-y^2}+ysqrt{1-x^2}=a

differentiate with respect to x,

\frac{d\{x\sqrt{1-y^2}\}}{dx}+\frac{d\{y\sqrt{1-x^2}\}}{dx}=\frac{da}{dx}

=>\sqrt{1-y^2}\frac{dx}{dx}+x\frac{d\sqrt{1-y^2}}{dx}+y\frac{d\sqrt{1-x^2}}{dx}+\sqrt{1-x^2}\frac{dy}{dx}=0

=> \sqrt{1-y^2}+\frac{-xy}{\sqrt{1-y^2}}\frac{dy}{dx}+\frac{-xy}{\sqrt{1-x^2}}+\sqrt{1-x^2}\frac{dy}{dx}=0

=> \frac{\sqrt{(1-x^2)(1-y^2)}-xy}{\sqrt{1-x^2}}+\frac{\sqrt{(1-x^2)(1-y^2)}-xy}{\sqrt{1-y^2}}\frac{dy}{dx}=0

=> \frac{1}{\sqrt{1-x^2}}+\frac{1}{\sqrt{1-y^2}}\frac{dy}{dx}=0

=> \frac{dy}{dx}=-\sqrt{\frac{1-y^2}{1-x^2}}
Similar questions