Math, asked by rmdolic11, 2 months ago

x^11/2 antiderivative
indefinite integration​

Answers

Answered by Anonymous
16

Step-by-step explanation:

 \bold{Considered \:  y = {x}^{ \frac{11}{2} } }

I  =  \int y \: dx

 =  \int {x}^{ \frac{11}{2} } dx

 =  \frac{ {x}^{ \frac{11}{2} + 1 } }{ \frac{11}{2}  + 1}  \:  \: ( \because \:  \int {x}^{n} dx =  \frac{ {x}^{n + 1} }{n + 1} )

 =  \frac{ {x}^{ \frac{11 + 2}{2} } }{ \frac{11 + 2}{2} }

 =  \frac{ {x}^{ \frac{13}{2} } }{ \frac{13}{2} }

 =  \frac{2 {x}^{ \frac{13}{2} } }{13}

I hope it is helpful

Similar questions