Math, asked by ks6262666, 1 year ago

x^2+1/x^2=79,then find the value of x^3+1/x^3

Answers

Answered by rohitkumargupta
6

\large{\mathfrak{HELLO  \:  \: DEAR,}}

 \mathit{WE  \:  \: KNOW  \:  \: THAT:-}<br /><br /><br />\\ \\ \mathbf{(a + b)^2 = (a^2 + b^2 + 2ab)}<br /><br />\\ \\ \mathit{\underline{NOW,}}<br /><br />\\ \\ \mathbf{put a = x , \:  \:  b = \frac{1}{x}}<br /><br />\\ \\ \mathit{(x + \frac{1}{x})^2 - 2* x *\frac{1}{x} = 79}\\ \\ \mathit{(x + \frac{1}{x})^2 = 81}\\ \\ \mathit{(x + \frac{1}{x})= 9}\\ \\ \mathit{IN  \:  \: CUBING  \:  \: BOTH  \:  \: SIDE:-}<br /><br />\\ \\ \mathit{WE \:  \:  GET,}<br /><br />\\ \\ \mathit{x^3 + \frac{1}{x^3} + 3x * \frac{1}{x}(x + \frac{1}{x}) = 719}\\ \\ \mathit{(x^3 + \frac{1}{x^3}) = 719 - 3(9)}\\ \\ \mathit{(x^3 + \frac{1}{x^3})=692}
\large{\mathit{\underline{I \:  \:  HOPE  \:  \: ITS  \:  \: HELP \:  \:  YOU  \:  \: DEAR, \:  \:  THANKS}}}
Similar questions