X^2 + 1/X^2 = 98 then X^3 + 1/X^3 = ?
Answers
Answered by
12
Solution:
Given ,
x² + (1/x²) = 98
Adding 2 on both the sides
→ x² + 1/x² + 2 = 98 + 2
→ x² + 1/x² + 2(1) = 100
Here ,
One can be written as x(1/x)
→ x² + 1/x² + 2[x(1/x)] = 100
It is in the form of
• a² + b² + 2ab = (a + b)²
Similarly
→ [x + (1/x)]² = 100
→ x + 1/x = √100
→ x + 1/x = 10 …….… ( i )
Now , cubing on both sides
→ (x + 1/x)³ = 10³
Using
• (a + b)³ = a³ + b³ + 3ab(a + b)
Similarly
→ x³ + 1/x³ + 3x(1/x)[x + 1/x] = 1000
→ x³ + 1/x³ + 3[x + 1/x] = 1000
Using equation 1
→ x³ + 1/x³ + 3(10) = 1000
→ x³ + 1/x³ = 1000 - 30
→ x³ + 1/x³ = 970.. [ Answer ]
Similar questions