x^2-11x-10=0
say me fast
Answers
Answer:
DO MIDDLE TERM FACTORIZATION
Answer:
How to solve your problem
2
−
1
1
−
1
0
=
0
x^{2}-11x-10=0
x2−11x−10=0
Quadratic formula
1
Use the quadratic formula
=
−
±
2
−
4
√
2
x=\frac{-{\color{#e8710a}{b}} \pm \sqrt{{\color{#e8710a}{b}}^{2}-4{\color{#c92786}{a}}{\color{#129eaf}{c}}}}{2{\color{#c92786}{a}}}
x=2a−b±b2−4ac
Once in standard form, identify a, b and c from the original equation and plug them into the quadratic formula.
2
−
1
1
−
1
0
=
0
x^{2}-11x-10=0
x2−11x−10=0
=
1
a={\color{#c92786}{1}}
a=1
=
−
1
1
b={\color{#e8710a}{-11}}
b=−11
=
−
1
0
c={\color{#129eaf}{-10}}
c=−10
=
−
(
−
1
1
)
±
(
−
1
1
)
2
−
4
⋅
1
(
−
1
0
)
√
2
⋅
1
x=\frac{-({\color{#e8710a}{-11}}) \pm \sqrt{({\color{#e8710a}{-11}})^{2}-4 \cdot {\color{#c92786}{1}}({\color{#129eaf}{-10}})}}{2 \cdot {\color{#c92786}{1}}}
x=2⋅1−(−11)±(−11)2−4⋅1(−10)
2
Simplify
Evaluate the exponent
Multiply the numbers
Add the numbers
Multiply the numbers
=
1
1
±
1
6
1
√
2
x=\frac{11 \pm \sqrt{161}}{2}
x=211±161
3
Separate the equations
To solve for the unknown variable, separate into two equations: one with a plus and the other with a minus.
=
1
1
+
1
6
1
√
2
x=\frac{11+\sqrt{161}}{2}
x=211+161
=
1
1
−
1
6
1
√
2
x=\frac{11-\sqrt{161}}{2}
x=211−161
4
Solve
Rearrange and isolate the variable to find each solution
=
1
1
+
1
6
1
√
2
x=\frac{11+\sqrt{161}}{2}
x=211+161
=
1
1
−
1
6
1
√
2
x=\frac{11-\sqrt{161}}{2}
x=211−161
Solution
=
1
1
±
1
6
1
√
2
x=\frac{11 \pm \sqrt{161}}{2}
x=211±161