Math, asked by varavindanff, 1 month ago

x^2-11x-10=0

say me fast​

Answers

Answered by earthrotate2
0

Answer:

DO MIDDLE TERM FACTORIZATION

Answered by singhreema20577
0

Answer:

How to solve your problem

2

1

1

1

0

=

0

x^{2}-11x-10=0

x2−11x−10=0

Quadratic formula

1

Use the quadratic formula

=

±

2

4

2

x=\frac{-{\color{#e8710a}{b}} \pm \sqrt{{\color{#e8710a}{b}}^{2}-4{\color{#c92786}{a}}{\color{#129eaf}{c}}}}{2{\color{#c92786}{a}}}

x=2a−b±b2−4ac

Once in standard form, identify a, b and c from the original equation and plug them into the quadratic formula.

2

1

1

1

0

=

0

x^{2}-11x-10=0

x2−11x−10=0

=

1

a={\color{#c92786}{1}}

a=1

=

1

1

b={\color{#e8710a}{-11}}

b=−11

=

1

0

c={\color{#129eaf}{-10}}

c=−10

=

(

1

1

)

±

(

1

1

)

2

4

1

(

1

0

)

2

1

x=\frac{-({\color{#e8710a}{-11}}) \pm \sqrt{({\color{#e8710a}{-11}})^{2}-4 \cdot {\color{#c92786}{1}}({\color{#129eaf}{-10}})}}{2 \cdot {\color{#c92786}{1}}}

x=2⋅1−(−11)±(−11)2−4⋅1(−10)

2

Simplify

Evaluate the exponent

Multiply the numbers

Add the numbers

Multiply the numbers

=

1

1

±

1

6

1

2

x=\frac{11 \pm \sqrt{161}}{2}

x=211±161

3

Separate the equations

To solve for the unknown variable, separate into two equations: one with a plus and the other with a minus.

=

1

1

+

1

6

1

2

x=\frac{11+\sqrt{161}}{2}

x=211+161

=

1

1

1

6

1

2

x=\frac{11-\sqrt{161}}{2}

x=211−161

4

Solve

Rearrange and isolate the variable to find each solution

=

1

1

+

1

6

1

2

x=\frac{11+\sqrt{161}}{2}

x=211+161

=

1

1

1

6

1

2

x=\frac{11-\sqrt{161}}{2}

x=211−161

Solution

=

1

1

±

1

6

1

2

x=\frac{11 \pm \sqrt{161}}{2}

x=211±161

Similar questions