Math, asked by shauryakadumi, 1 month ago

√x^2-16 - √x^2-8x + 16 = √x^2 -5x +4
Can anyone pls solve it with explanation??

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Given equation is

\rm :\longmapsto\: \sqrt{ {x}^{2} - 16 }  -  \sqrt{ {x}^{2}  - 8x + 16} =  \sqrt{ {x}^{2}  - 5x + 4}

can be rewritten as

\rm :\longmapsto\: \sqrt{ {x}^{2} - 16 }  -  \sqrt{ {x}^{2}  - 8x + 16} -  \sqrt{ {x}^{2}  - 5x + 4} = 0

\rm :\longmapsto\: \sqrt{ {x}^{2} - {4}^{2}}- \sqrt{{x}^{2}- 4x - 4x + 16} -  \sqrt{ {x}^{2}  - 4x - x + 4} = 0

\rm :\longmapsto\: \sqrt{x + 4)(x - 4)}  -  \sqrt{x(x - 4) - 4(x - 4)} -  \sqrt{x(x - 4) - 1(x - 4)}  = 0

\rm :\longmapsto\: \sqrt{(x + 4)(x - 4)}  -  \sqrt{(x - 4)(x - 4)} -  \sqrt{(x - 4)(x - 1)}  = 0

\rm :\longmapsto\: \sqrt{x - 4}( \sqrt{x + 4} -  \sqrt{x - 4} -  \sqrt{x - 1}) = 0

\rm :\implies\:\: \sqrt{x - 4} = 0 \: or \: \sqrt{x + 4} -  \sqrt{x - 4} -  \sqrt{x - 1} = 0

\bf\implies \:x - 4 = 0 \:  \:  \: or \: x = 4

Also,

\rm :\longmapsto\: \sqrt{x + 4} -  \sqrt{x - 4} -  \sqrt{x - 1} = 0

can be rewritten as

\rm :\longmapsto\: \sqrt{x + 4} -  \sqrt{x - 4}  = \sqrt{x - 1}

On squaring both sides, we get

\rm :\longmapsto\: (\sqrt{x + 4} -  \sqrt{x - 4})^{2}   = (\sqrt{x - 1})^{2}

\rm :\longmapsto\:x + 4 + x - 4 - 2\sqrt{x + 4} \sqrt{x - 4}  = x - 1

\rm :\longmapsto\:2x - 2\sqrt{ {x}^{2}  - 16}   = x - 1

\rm :\longmapsto\: - 2\sqrt{ {x}^{2}  - 16}   = x - 1 - 2x

\rm :\longmapsto\: - 2\sqrt{ {x}^{2}  - 16}   =  - x - 1

\rm :\longmapsto\: - 2\sqrt{ {x}^{2}  - 16}   =  - (x  + 1)

\rm :\longmapsto\: 2\sqrt{ {x}^{2}  - 16}   =  (x  + 1)

On squaring both sides, we get

\rm :\longmapsto\:4( {x}^{2} - 16) =  {(x + 1)}^{2}

\rm :\longmapsto\:4{x}^{2} - 64 =  {x}^{2}  + 1 + 2x

\rm :\longmapsto\:4{x}^{2} - 64 -  {x}^{2}   - 1  - 2x = 0

\rm :\longmapsto\:3{x}^{2}  - 2x- 65    = 0

\rm :\longmapsto\:3{x}^{2}  - 15x + 13x- 65    = 0

\rm :\longmapsto\:3x(x - 5) + 13(x - 5) = 0

\rm :\longmapsto\:(x - 5)(3x + 13) = 0

\bf\implies \:x = 5 \:  \: or \:  \: x =  -  \: \dfrac{13}{3}

So, Solution is

\bf\implies \:x = 5 \:  \: or \:  \: x =  -  \: \dfrac{13}{3}  \:  \: or \:  \: x = 4

Similar questions