Math, asked by godavrisuresh1984, 3 months ago

x=2+√3 find the value x³+1/x³​

Answers

Answered by OtakuSama
74

Given:-

 \\  \sf{ \rightarrow{x = 2 +  \sqrt{3} }} \\

To Find:-

 \\  \sf{ \rightarrow{ {x}^{3}   + \frac{1}{ {x}^{3} } }} \\

Formulas Applied:-

 \\  \sf{  \rightarrow{ {a}^{3}  +  {b}^{3}  = (a + b) {}^{3}  - 3ab(a + b)}}

 \sf{ \rightarrow{ {a}^{2}  -  {b}^{2}  = (a + b)(a - b) }}\\  \\

Solution:-

First, let's find the value of :-

  \:  \sf{ \frac{1}{x} } \\

Now, we were given:-

 \\  \sf{x = 2 +  \sqrt{3} }

Therefore,

 \\  \sf{ \frac{1}{x}  =  \frac{1}{2 -  \sqrt{3} } }

 \\  \sf{ \implies{ \frac{1}{x} }  =  \frac{(2 -  \sqrt{3}) }{(2 +  \sqrt{3})(2 -  \sqrt{3}) } }

 \\  \sf{ \implies{ \frac{1}{x}  =  \frac{2  -  \sqrt{3} }{(2) {}^{2} - ( \sqrt{3} ) {}^{2}  } } }\:  \:  \:  \:  \:  \: \boxed{ \rm{ \because{(a + b)(a - b) =  {a}^{2}  -  {b}^{2} }}}

 \\  \sf{ \implies{ \frac{1}{x}  =  \frac{2 -  \sqrt{3} }{4 - 3} }}

 \\  \sf{ \therefore{ \bold{ \frac{1}{x}  = 2 -  \sqrt{3} }}}

Again,

  \\  \sf{ \bold{x +  \frac{1}{x} }}

 \\  \sf{ \implies{2 +   \cancel{\sqrt{3}}  + 2  -    \cancel{\sqrt{3} }}}

 \\  \sf{  \implies{ \bold{  4}}}

 \\ { \therefore{ \rm{ \pink{x +  \frac{1}{x}  = 4}}}} \\

Now,

 \\  \bold{ {x}^{3}   +  \frac{1}{ {x}^{3} } }

 \\  \sf{ \implies{(x) {}^{3}  + ( \frac{1}{x} )  {}^{3} }}

 \\  \sf{ \implies{(x +  \frac{1}{x} ) {}^{3}  - 3 \times \cancel{ x} \times  \frac{1}{ \cancel{x}} (x +  \frac{1}{x} })}

 \\  \sf{ \implies{(4) {}^{3}  - 3 \times 4}} \:  \:  \:  \:  \:  \:  \boxed{ \because{ \rm{x +  \frac{1}{x}  = 4}}}

 \\  \sf{ \implies{64 - 12}}

 \\  \sf{ \implies{ \red{52}}}

 \\  \\  \underline{ \boxed{ \green{ \rm{Hence \:  \bold{ {x}^{3}  +  \frac{1}{ {x}^{3} }  = 52}}}}} \\  \\

Answered by aryans01
3

Hope it is helpful for you.

Attachments:
Similar questions