Math, asked by drcinthomgou, 1 year ago

x 2 - 4ax + 4a 2 - b 2 =0 find the roots of this quadratic equation by method of completing the square.

Answers

Answered by mysticd
177

Answer:

Roots \:of\\\: given\: quadratic\: equation\: are\:  ,\\x = 2a+b \: Or \: x = 2a-b

Step-by-step explanation:

Given quadratic equation:

-4ax+4a²-b²=0

Finding roots of the quadratic equation By completing the square method:

Rearranging the equation, we get

=> -4ax+4a² =

x^{2}-2\times x \times 2a +(2a)^{2}=b^{2}

\implies (x-2a)^{2}=b^{2}

\implies x-2a = ±\sqrt{b^{2}}

\implies x-2a=±b

\implies x = 2a±b

\implies x = 2a+b \: Or \: x = 2a-b

Therefore,

x = 2a+b \: Or \: x = 2a-b

•••♪

Answered by presentmoment
92

(2a-b)  and (2a+b) are the factors of the quadratic equation  \bold{x^{2}-4 a x+4 a^{2}-b^{2}=0} by the method of completing the square.

Given:  

x^{2}-4 a x+4 a^{2}-b^{2}=0

To find:

Factors of x^{2}-4 a x+4 a^{2}-b^{2}=0  by completing the square method

Solution:

\begin{array}{l}{x^{2}-4 a x+4 a^{2}-b^{2}=0} \\ {(x)^{2}+2(-2 a) x+(2 a)^{2}-b^{2}=0} \\ {(x-2 a)^{2}-b^{2}=0} \\ {(x-2 a+b)(x-2 a-b)=0}\end{array}

Either,

\begin{array}{l}{(x-2 a+b)=0} \\ {x=2 a-b} \\ {o r} \\ {(x-2 a-b)=0} \\ {x=2 a+b}\end{array}

Thus, the factors of \bold{x^{2}-4 a x+4 a^{2}-b^{2}=0} are found to be \bold{(2a-b) and (2a+b).}

Similar questions