x^2-(5-i)x+(18+i)=0 find the quadratic equation
Answers
Answered by
8
x²-(7-i)x+(18-i)=0
Equation should be:
ax²+bx+c=0,we get a=1,b=-(7-i) & c=18-i
Whereby,α=-b+√b²-4α/2α & β=-b-√b²-4α/2α
Let a+ib=√-24-10i
⇒a²-b²+2abi=-24-10i
⇒a²-b²=-24 & 2ab=-10
consider:
{a²+b²}²=(a²-b²)²+4a²b²
⇒{a²+b²)²=(-24)^4+(-10)²=676
⇒a²+b²=26
Therefore,a²-b²=-24 &a²+b²=26
⇒a²=1 & b²=25
⇒a=+/-1 & b=+/-5
But 2ab=-10,so a & b must be opposite signs:
Therefore α=1 &b=-5 or α=-1 & b=5
⇒√-24-100=1-5i /-1+5i
Substituting either of these values in equation (i),we get
α=(7-i)+(1-5i)/2 & β=(7-i)-(1-5i)/2
⇒α=4-3i & β=3-3i
Therefore, roots of the given equation are 4-3i & 3-3i
Similar questions