Math, asked by 03nishitha, 1 year ago

(X^2-5x+7)^2 -(x-2)(x-3)=1

Answers

Answered by MaheswariS
7

\textbf{Given:}

\mathsf{(x^2-5x+7)^2-(x-2)(x-3)=1}

\textbf{To find:}

\textsf{Roots of the given equation}

\textbf{Solution:}

\mathsf{Consider,}

\mathsf{(x^2-5x+7)^2-(x-2)(x-3)=1}

\mathsf{(x^2-5x+7)^2-(x^2-5x+6)=1}

\mathsf{Take,\;\;t=x^2-5x+6}

\mathsf{(t+1)^2-t-1=0}

\mathsf{t^2+1+2t-t-1=0}

\mathsf{t^2+t=0}

\mathsf{t(t+1)=0}

\mathsf{t=0\;\;or\;\;t+1=0}

\underline{\mathsf{case(i):\;t=0}}

\mathsf{x^2-5x+6=0}

\mathsf{(x-2)(x-3)=0}

\implies\boxed{\mathsf{x=2,3}}

\underline{\mathsf{case(ii):\;t+1=0}}

\mathsf{x^2-5x+7=0}

\mathsf{\left(x^2-5x+\dfrac{25}{4}\right)+7-\dfrac{25}{4}=0}

\mathsf{\left(x-\dfrac{5}{2}\right)^2+\dfrac{3}{4}=0}

\mathsf{\left(x-\dfrac{5}{2}\right)^2=-\dfrac{3}{4}}

\mathsf{\left(x-\dfrac{5}{2}\right)^2=\left(\dfrac{i\sqrt{3}}{2}\right)^2}

\mathsf{x-\dfrac{5}{2}\right=\pm\dfrac{i\sqrt{3}}{2}}

\implies\boxed{\mathsf{x=\dfrac{5}{2}\right\pm\dfrac{i\sqrt{3}}{2}}}

\textbf{Answer:}

\mathsf{Roots\;are\;2,3,\dfrac{5}{2}\right+\dfrac{i\sqrt{3}}{2},\dfrac{5}{2}\right-\dfrac{i\sqrt{3}}{2}}

\textbf{Find more:}

If x^2-bx/ax-c =m-1/m+1

has roots which are numerically equal but of opposite sign, then the value of'm'must be

(A) a-b/a+b

(B) a+b/a-b

(C) O

(D) 1

soneone please answer this

https://brainly.in/question/9525569

If the roots of x^2 -bx/ax-c = k-1/k+1 are numerically equal and opposite in sign then k=?​

https://brainly.in/question/16638285

Answered by shivaniram2102
0

Step-by-step explanation:

Mark this as the brainliest guys

check the pic

Attachments:
Similar questions