Math, asked by libertygearinger, 5 months ago

X^2-8x+19=0 quad formula

Answers

Answered by MrHyper
3

\huge\blue{\bf{Question:}}

 \bf Find \: the \: roots \: of \: the  \\ \bf quadratic \: equation :  \\  \bf  {x}^{2}  - 8x + 19 = 0 \\  \bf using \: quadratic \: formula

\huge\blue{\bf{Answer:}}

 \bf Quadratic \: formula :  \\  \\ \bf  \frac{ - b  ±  \sqrt{ {b}^{2} - 4ac }  }{2a}  \\  \\  \bf Here \:  \:  \: a = 1 ,\:  \:  \:  \: b =  - 8 ,\:  \:  \: c = 19 \\  \\  \bf  {b}^{2}  - 4ac =  {( - 8)}^{2}  - 4(1)(19) \\  \bf = 64 - 76 \\  \bf =  - 12 \\  \bf \therefore \sqrt{ {b}^{2} - 4ac }  =  \sqrt{ - 12}  =  - 2 \sqrt{3}  \\  \\  \bf  \implies   \frac{- ( - 8) ± ( - 2 \sqrt{3} )}{2(1)} \\  \\ \bf =  \frac{8 + ( - 2 \sqrt{3} )}{2}  \:  \:  \:  \:  \:  \frac{8 - ( - 2 \sqrt{3} )}{2}  \\  \\  \bf =   \frac{\cancel{8}^{4}  - 2 \sqrt{3} }{ \cancel{2}} \:  \:  \:  \:  \:  \frac{ \cancel{8}^{4}  + 2 \sqrt{3} }{ \cancel{2}}  \\  \\  \bf = 4 - 2 \sqrt{3}  \:  \: \:  \:   \: 4 + 2 \sqrt{3}  \\  \\  \bf \therefore The \: roots \: are :  \\  \bf 4 - 2 \sqrt{3}   \:  \: \: and \:  \:  \: 4 + 2 \sqrt{3}

\huge\blue{\bf{Hope~it~helps..!!}}

Similar questions