Math, asked by areebakhan1716, 4 days ago

x^2+8x-48=0 use qaudratic formula and solve​

Answers

Answered by SanaArmy07
2

Answer:

\huge\color{o}\boxed{\colorbox{yellow}{x = 4 ; x = -12}}

Step-by-step explanation:

Equation:-

x² + 8x - 48 = 0

Quadratic formula:-

 \frac{ - b± \sqrt{ {b}^{2} - 4ac } }{2a}

a = 1

b = 8

c = -48

Put value of a,b,c in the formula

x =  \frac{ - (8)± \sqrt{( {8}^{2}) } - 4(1)( - 48) }{2(1)}

 =  \frac{ - 8± \sqrt{64  + 192} }{2}

x =  \frac{ - 8± \sqrt{256} }{2}

x =  \frac{ - 8±16}{2}

Now we have two values for x

x =  \frac{ - 8 + 16}{2}  \:  \:  \: ,x =  \frac{ - 8 - 16}{2}

x =  \frac{ 8}{2}  \:  \:  \:  \: ,x =  \frac{ - 24}{2}

x =  4 \:  \:  \:  \:  \:  \: , \: x =  - 12

Similar questions