Math, asked by parthh16, 3 months ago

x^2+mx-28=(x-7)(x+4)​

Answers

Answered by amansharma264
7

EXPLANATION.

⇒ x² + mx - 28 = (x - 7)(x + 4).

As we know that,

Factorizes the equation into simple form, we get.

⇒ x² + mx - 28 = x² + 4x - 7x - 28.

⇒ x² + mx - 28 = x² - 3x - 28.

⇒ x² + mx - 28 - x² + 3x + 28 = 0.

⇒ mx + 3x = 0.

⇒ x(m + 3) = 0.

⇒ m + 3 = 0.

⇒ m = -3.

                                                                                                                       

MORE INFORMATION.

Nature of the factors of the quadratic expression.

(1) = Real and different, if b² - 4ac > 0.

(2) = Rational and different, if b² - 4ac is a perfect square.

(3) = Real and equal, if b² - 4ac = 0.

(4) = If D < 0 Roots are imaginary and unequal or complex conjugate.

Answered by xXMarziyaXx
1

EXPLANATION.

⇒ x² + mx - 28 = (x - 7)(x + 4).

As we know that,

Factorizes the equation into simple form, we get.

⇒ x² + mx - 28 = x² + 4x - 7x - 28.

⇒ x² + mx - 28 = x² - 3x - 28.

⇒ x² + mx - 28 - x² + 3x + 28 = 0.

⇒ mx + 3x = 0.

⇒ x(m + 3) = 0.

⇒ m + 3 = 0.

⇒ m = -3.

                                                                                                                       

MORE INFORMATION.

Nature of the factors of the quadratic expression.

(1) = Real and different, if b² - 4ac > 0.

(2) = Rational and different, if b² - 4ac is a perfect square.

(3) = Real and equal, if b² - 4ac = 0.

(4) = If D < 0 Roots are imaginary and unequal or complex conjugate.

Hope it helps.

#Be brainly

Similar questions