Math, asked by abhi358, 1 year ago

x=2+root3 show that x^3 +1/x^3 =52

Answers

Answered by adee1729
4
since
x=2+√3,

then
x=2-√3,

then

x³+1/x³=(2+√3)³+(2-√3)³,

=[8+3√3+3×2×√3(2+√3)]+[8-3√3-3×2×√3(2-√3)],

=[8+3√3+12√3+18]+[8-3√3-12√3+18],

=8+3√3+12√3+18+8-3√3-12√3+18,

=8+8+18+18,

=52✓✓✓✓✓
Answered by BEJOICE
10

given \:  \: x = 2 +  \sqrt{3}  \\ so \:  \:  \frac{1}{x}  =  \frac{1}{2 +  \sqrt{3}}  =  \frac{2  -   \sqrt{3}}{(2 +  \sqrt{3})(2  -   \sqrt{3})}  \\  =  \frac{2  -   \sqrt{3}}{4 - 3}  = 2  -   \sqrt{3} \\  \\ therefore \:  \: x +  \frac{1}{x}  \\  = (2 +  \sqrt{3}) + (2  -   \sqrt{3}) = 4 \\  \\  {x}^{3}  +  \frac{1}{ {x}^{3} }  =  {(x +  \frac{1}{x} )}^{3}  - 3(x +  \frac{1}{x} ) \\  =  {4}^{3}  - 3 \times 4 = 64 - 12 = 52
Similar questions