Math, asked by parichaysharma434, 17 days ago

(x^2+y^2)^2= xy
find dy/dx

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\: {( {x}^{2}  +  {y}^{2} )}^{2}  = xy

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\: \dfrac{d}{dx} {( {x}^{2}  +  {y}^{2} )}^{2}  = \dfrac{d}{dx}xy

We know

\boxed{ \bf{ \: \dfrac{d}{dx} {x}^{n} =  {nx}^{n - 1}}}

and

\boxed{ \bf{ \: \dfrac{d}{dx}uv =u\dfrac{d}{dx}v  + v\dfrac{d}{dx}u}}

So, using these two results, we get

\rm :\longmapsto\:2( {x}^{2} +  {y}^{2})\dfrac{d}{dx}( {x}^{2} +  {y}^{2}) = x\dfrac{d}{dx}y + y\dfrac{d}{dx}x

\rm :\longmapsto\:2( {x}^{2} +  {y}^{2})(2x + 2y\dfrac{d}{dx}y) = x\dfrac{dy}{dx} + y \times 1

\rm :\longmapsto\:2( {x}^{2} +  {y}^{2})(2x + 2y\dfrac{dy}{dx}) = x\dfrac{dy}{dx} + y

\rm :\longmapsto\:4x( {x}^{2} +  {y}^{2}) + 4y\dfrac{dy}{dx}( {x}^{2} +  {y}^{2})= x\dfrac{dy}{dx} + y

\rm :\longmapsto\:4y\dfrac{dy}{dx}( {x}^{2} +  {y}^{2}) -  x\dfrac{dy}{dx}  =  y - 4x( {x}^{2}  +  {y}^{2})

\rm :\longmapsto\: \bigg(4y( {x}^{2} +  {y}^{2}) -  x \bigg)\dfrac{dy}{dx}  =  y - 4x( {x}^{2}  +  {y}^{2})

\bf\implies \:\dfrac{dy}{dx} = \dfrac{y -  {4x}^{3}  - 4x{y}^{2} }{ {4yx}^{2}  +  {4y}^{3}  - x}

Additional Information :-

\boxed{ \bf{ \: \dfrac{d}{dx}k = 0}}

\boxed{ \bf{ \: \dfrac{d}{dx}x = 1}}

\boxed{ \bf{ \: \dfrac{d}{dx} \sqrt{x}  =  \frac{1}{2 \sqrt{x} } }}

\boxed{ \bf{ \: \dfrac{d}{dx}logx =  \frac{1}{x}}}

\boxed{ \bf{ \: \dfrac{d}{dx} {e}^{x} =  {e}^{x}}}

\boxed{ \bf{ \: \dfrac{d}{dx} {a}^{x} =  {a}^{x} \: loga}}

\boxed{ \bf{ \: \dfrac{d}{dx}k \: f(x) \:  =  \: k \: \dfrac{d}{dx}f(x)}}

\boxed{ \bf{ \: \dfrac{d}{dx}sinx = cosx}}

\boxed{ \bf{ \: \dfrac{d}{dx}cosx = -  \:  sinx}}

\boxed{ \bf{ \: \dfrac{d}{dx}tanx =  {sec}^{2}x}}

\boxed{ \bf{ \: \dfrac{d}{dx}cotx =  -  \:  {cosec}^{2}x}}

Answered by TrustedAnswerer19
79

Answer:

\orange{ \boxed{ \therefore \bf\dfrac{dy}{dx} = \dfrac{y -  {4x}^{3}  - 4x{y}^{2} }{ {4yx}^{2}  +  {4y}^{3}  - x}}} [/tex]

Explanation :

Given,

 \bf \: {( {x}^{2}  +  {y}^{2} )}^{2}  = xy

It is a implicit function.

We have to differentiate it w.r.t x

But at first we have to know some basic formula.

\red{\bf \odot\:{ \bf{ \: \dfrac{d \:  {x}^{n} }{dx}  =  {nx}^{n - 1}}} }\\\\\bf  \pink{\odot\:{ \bf{ \: \dfrac{d \: uv}{dx}=u\dfrac{d}{dx}v  + v\dfrac{d}{dx}u}}} \\  \\ \green{ \bf \odot\: \frac{d \: (constant)}{dx}  = 0} \\  \\  \huge \sf \: now \\    \\  \bf \frac{d \:  {( {x}^{2} +  {y}^{2}  })^{2} }{dx}  =  \frac{d \: xy}{dx} \\  \\   \bf \implies  \: 2( {x}^{2} +  {y}^{2})\dfrac{d}{dx}( {x}^{2} +  {y}^{2}) = x\dfrac{d}{dx}y + y\dfrac{d}{dx}x \\  \\ </p><p>\bf \implies  \:2( {x}^{2} +  {y}^{2})(2x + 2y\dfrac{d}{dx}y) = x\dfrac{dy}{dx} + y \times 1 \\  \\ </p><p> \bf \implies  \:2( {x}^{2} +  {y}^{2})(2x + 2y\dfrac{dy}{dx}) = x\dfrac{dy}{dx} + y \\  \\ </p><p> \bf \implies  \:4x( {x}^{2} +  {y}^{2}) + 4y\dfrac{dy}{dx}( {x}^{2} +  {y}^{2})= x\dfrac{dy}{dx} + y \\  \\ </p><p>\bf \implies  \:4y\dfrac{dy}{dx}( {x}^{2} +  {y}^{2}) -  x\dfrac{dy}{dx}  =  y - 4x( {x}^{2}  +  {y}^{2}) \\  \\ \bf \implies  \: \{4y( {x}^{2} +  {y}^{2}) -  x \}\dfrac{dy}{dx}  =  y - 4x( {x}^{2}  +  {y}^{2}) \\   \\ \bf \implies  \:(4y {x}^{2}  + 4 {y}^{3} - x)  \frac{dy}{dx}  = y - 4 {x}^{3}  + 4x {y}^{2}  \\  \\  \bf \implies  \: - (x - 4 {y}^{3}  - 4y {x}^{2} ) \frac{dy}{dx}  =  - (4 {x}^{3}  - 4x {y}^{2}  - y) \\  \\  \bf\implies \:\dfrac{dy}{dx} = \dfrac{y -  {4x}^{3}  - 4x{y}^{2} }{ {4yx}^{2}  +  {4y}^{3}  - x}  \\  \\  \\ \orange{ \boxed{ \therefore \bf\dfrac{dy}{dx} = \dfrac{y -  {4x}^{3}  - 4x{y}^{2} }{ {4yx}^{2}  +  {4y}^{3}  - x}}} [/tex]

Attachments:
Similar questions