Math, asked by Saptarshi11, 1 year ago

x^2+y^2=23xy probe log(x+y)/5=1/2( logx+logy)

Answers

Answered by Swarup1998
6
The answer is given below :

Given,

  {x}^{2}  +  {y}^{2}  = 23xy  \\  \\  or \:  \: {(x + y)}^{2} - 2xy = 23xy \\  \\ or \:  \:  {(x + y)}^{2} = 25xy  \\  \\  taking \:  \: log \:  \: we \:  \: get \\  \\ log \:  {(x + y)}^{2}  = log \: (25xy) \\  \\ or \:  \: 2 \: log(x + y) = log(25) + logx + logy \\  \\ or \:  \: 2 \: log(x + y )= log ({5}^{2} ) + logx + logy \\  \\ or \:  \: 2 \: log(x + y) - 2 \: log5 = logx + logy \\  \\ or \:  \: 2 \: (log(x + y) - log5) = logx  + logy \\  \\ or \:  \: 2log (\frac{x + y}{5}) = logx + logy \\ \\  or \:  \: log( \frac{x + y}{5} ) =  \frac{1}{2} (logx + logy)


[PROVED]

Thank you for your question.
Similar questions