Math, asked by poojithakollapu, 3 months ago

(x^2+y^2-2y)dy-2xdx=0​

Answers

Answered by senboni123456
2

Step-by-step explanation:

We have,

( {x}^{2}  +  {y}^{2}  - 2y)dy - 2xdx = 0

 \implies {x}^{2} dy +  {y}^{2} dy - 2ydy  - 2xdx = 0 \\

 \implies( {x}^{2}  +  {y}^{2} )dy = 2(ydy + xdx) \\

 \implies \sqrt{( { x }^{2}  +  {y}^{2}) } dy = 2 \frac{(ydy + xdx)}{ \sqrt{ {x}^{2} +  {y}^{2}  } }  \\

 \implies \: dy =  \frac{2}{ \sqrt{ {x}^{2} +  {y}^{2}  } } d( \sqrt{{x}^{2} +  {y}^{2} } ) \\

Integrating both sides,

 \implies \int  dy =  \int \frac{2}{ \sqrt{ {x}^{2} +  {y}^{2}  } } .d( \sqrt{ {x}^{2} +  {y}^{2}  }) \\

 \implies \: y = 2 ln( \sqrt{ {x}^{2} +  {y}^{2}  } ) + c

 \implies \: y =   ln( {x}^{2} +  {y}^{2}  )  +  ln(c) ...(where \:  \: c > 0 \:  \: is \:  \: a \:  \: constant) \\

 \implies \: y =  ln(c( {x}^{2}  +  {y}^{2}) )

 \implies \: c( {x}^{2}  +  {y}^{2}) =  {e}^{y}

Answered by nellorevineeth123
0

Answer:

Step-by-Step-by-stepstep explanation:

Similar questions