Math, asked by chauhanraghav956, 9 months ago

(x/2-y/3) (x/2-y/3+1)​

Answers

Answered by Anonymous
2

GIVEN:

 \bold{ (\frac{x}{2} -  \frac{y}{3})( \frac{x}{2}  -  \frac{y}{3}  + 1)  }

FIND:

 \bold{solve \:  the \: expression (\frac{x}{2} -  \frac{y}{3})( \frac{x}{2}  -  \frac{y}{3}  + 1)  }

SOLUTION:

We have,

 \bold{ \to (\frac{x}{2} -  \frac{y}{3})( \frac{x}{2}  -  \frac{y}{3}  + 1)  }

 \bold{multiply \: the \: parentheses}

 \huge{ \bold{ \downarrow \downarrow \downarrow \downarrow  }}

 \bold{ \to \red{  \frac{x}{2} \times  ( \frac{x}{2}  -  \frac{y}{3}  + 1)  -  \frac{y}{3} ( \frac{x}{2}  -  \frac{y}{3}  + 1)  }}

 \bold{now \: take \: the \: lcm}

 \huge{ \bold{ \downarrow \downarrow \downarrow \downarrow  }}

 \bold{ \to  \frac{x}{2} \times    \red{\frac{3x - 2y + 6}{6}}    -\frac{y}{3}  \times   \red{\frac{3x - 2y + 6}{6} }}

 \bold{multiply \: the \: fraction}

 \huge{ \bold{ \downarrow \downarrow \downarrow \downarrow  }}

 \bold{ \to  \red{\frac{x \times (3x - 2y + 6)}{12}}    -   \red{\frac{y \times (3x - 2y + 6)}{18} }}

 \bold{ \underline{ \orange{distribute}} \: x  \: and \: y\: through \: the \: parantheses}

 \huge{ \bold{ \downarrow \downarrow \downarrow \downarrow  }}

 \bold{ \to  \red{\frac{( {3x}^{2}  - 2xy + 6x)}{12}}    -   \red{ \frac{(3x -  {2y}^{2}  + 6y)}{18} }}

 \bold{again\: take \: the \: lcm}

 \huge{ \bold{ \downarrow \downarrow \downarrow \downarrow  }}

 \bold{ \to  \frac{3( {3x}^{2}  - 2xy + 6x) - 2(3x -  {2y}^{2}  + 6y)}{36}}

 \bold{ \to  \frac{{9x}^{2}  - 6xy + 18x - 6xy  +  {4y}^{2}   -  12y}{36}}

 \bold{collect \: like \: terms}

 \huge{ \bold{ \downarrow \downarrow \downarrow \downarrow  }}

 \bold{ \to  \frac{{9x}^{2}  - 12xy + 18x +  {4y}^{2}   -  12y}{36}}

Hence, ANSWER

 \bold{ \longrightarrow  \frac{{9x}^{2}  - 12xy + 18x +  {4y}^{2}   -  12y}{36}}

Answered by ChromaticSoul
1

\huge\bold\blue{Answer!}

A rational number is a number that can be expressed as the quotient or fraction p/q of two integers, a numerator p and a non-zero denominator q. Since q may be equal to 1, every integer is a rational number.

Similar questions