Math, asked by rituraj1040, 10 months ago

x-2y=4 and 4x-2y=-3 by elimination method​

Answers

Answered by thiyagarajankr1956
2

Answer:

x= -7/3 and y= -19/6

Attachments:
Answered by Delta13
3

 \large{\textsf{\underline{Given}}}

  • x -2y = 4
  • 4x -2y = -3

 \large{\textsf{\underline{To   find}}}

  • The value of x and y by Elimination Method.

\large{\textsf{\underline{Solution}}}

Let,

x -2y = 4 -----(1)

4x -2y = -3 ------(2)

Now we will multiply eq(1) by 4 to make the coefficient of x equal.

 4 \times (x - 2y = 4) \\ 1 \times (4x - 2y =  - 3) \\  \\  \longrightarrow \: 4x -8y = 16 \\  \longrightarrow4x - 2y =  - 3 \\  \:  \:  \:  \:  \:  -  \:  \:  \:   \:  \:  \:  \: +  \:  \:  \:  \: \:  \:  \:   +  \\  \\  \{ \text{changing  signs} \} \\  \\ we \: get \\  \\  \:  \:  \:  \cancel{4x} - 8y = 16 \\   - \cancel{ 4x} + 2y = \:  \:  3 \\  \\  \implies \:  - 6y = 19 \\  \\  \implies \boxed{ \red{y =  -  \frac{19}{6} }}

Putting value of y in eq(1)

 \implies \: x - 2 \left (  -  \frac{19}{6}  \right) = 4 \\  \\  \implies \: x -  \left( -  \frac{19}{3}  \right) = 4 \\  \\  \implies \: x +  \frac{19}{3}  = 4 \\  \\  \implies \: x = 4 -  \frac{19}{3}  \\  \\  \implies \: x =  \frac{4(3) - 19}{3} \\  \\  \implies \: x =  \frac{12 - 19}{3}  \\  \\ \implies  \boxed{ \red{x =  -  \frac{7}{3} }}

Similar questions