Math, asked by shreya54299, 6 months ago

(x-2y)cube + (2y-3z)cube + (3z-x)cube​

Answers

Answered by Flaunt
24

\huge\tt{\bold{\underline{\underline{Question᎓}}}}

 {(x - 2y)}^{3}  +  {(2y - 3z)}^{3}  +  {(3z - x)}^{3}

\huge\tt{\bold{\underline{\underline{Answer᎓}}}}

┏━━━━━━━━━━━━━━━━━━━━━━━┓

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ✍️

Here,this identity is used :

 \bold{\boxed{{(a - b)}^{3}  =  {a}^{3}  +  {b}^{ 3}  - 3ab(a - b)}}

 \bold{{(x - 2y)}^{3}  =  {x}^{3}  +  {(2y)}^{3}  - 3(x)(2y)(x - 2y)}

 =  {x}^{3}  + 8 {y}^{3}  - 6xy(x - 2y)

 \bold{\red{=  {x}^{3}  + 8 {y}^{3}  - 6 {x}^{2} y + 12x {y}^{2} }}

 \bold{=  >  {(2y - 3z)}^{3}  =  {(2y)}^{3}  +  {(3z)}^{3}  - 3(2y)(3z)(2y - 3z)}

 \bold{\green{= 8 {y}^{3}  + 27 {z}^{3}  - 24 {y}^{2} z + 36y {z}^{2}}}

 \bold{=  >  {(3z - x)}^{3}  =  {(3z)}^{3}  +  {x}^{3}  - 3(3z)(x)(3z - x)}

 =  > 27 {z}^{3}  +  {x}^{3}  - 9xz(3z - x)

 \bold{\blue{= 27 {z}^{3}  +  {x}^{3}  - 27x {z}^{2}  + 9 {x}^{2} z}}

Now adding all three values we obtain:

 {(x - 2y)}^{3}  +  {(2y - 3z)}^{3}  +  {(3z - x)}^{3}  =  {\red{{x}^{3}  + 8 {y}^{3}  - 6 {x}^{2} y + 12x {y}^{2}  }}+ {\green{8 {y}^{3}  + 27 {z}^{3}  - 24 {y}^{2} z + 36y {z}^{2}  }}+ {\blue{27 {z}^{3}  +  {x}^{3}  - 27x {z}^{2}  + 9 {x}^{2} z}}

 = 2 {x}^{3}  + 16 {y}^{3}  + 54 {z}^{3}  - 6 {x}^{2} y + 12x {y}^{2}  - 24 {y}^{2} z + 36y {z}^{2}  - 27x {z}^{2}  + 9 {x}^{2} z

Taking variable common from like terms:

 \bold{=  > 2 {x}^{3}  + 16 {y}^{3}  + 54 {z}^{3}  - 6xy(x + 2y) - 6yz(4y - 6z) - 9xz(3z - x)}

┗━━━━━━━━━━━━━━━━━━━━━━━┛

Similar questions