X=√3+1/√3-1 and y=√3-1/√3+1 value of (xsqure + ysquare)
Answers
Answered by
0
ʜᴇʏᴀ!!
ʜᴇʀᴇ's ʏᴏᴜʀ ᴀɴsᴡᴇʀ
_____________________
ɪғ ,
x = √3 + 1 / √3 - 1 ᴀɴᴅ ʏ = √3 - 1 / √3 + 1
ᴛʜᴇɴ ,
x + ʏ = √3 + 1 / √3 - 1 + √3 - 1 / √3 + 1
= ( √3 + 1 )^2 + ( √3 - 1 )^2 / ( √3 - 1 ) ( √3 + 1 )
= 3 + 2√3 + 1 + 3 - 2√3 + 1 / ( √3 )^2 - ( 1 )^2
[ °•° ( ᴀ + ʙ )^2 = ᴀ^2 + 2ᴀʙ + ʙ^2 ]--------- ( ɪ )
[ °•° ( ᴀ - ʙ )^2 = ᴀ^2 - 2ᴀʙ + ʙ^2 ]---------- ( ɪɪ )
[°•° ᴀ^2 - ʙ^2 = ( ᴀ + ʙ ) ( ᴀ - ʙ ) ]----------- ( ɪɪɪ )
★ ᴜsɪɴɢ ( ɪ ) ( ɪɪ ) ( ɪɪɪ ) ɪᴅᴇɴᴛɪᴛʏ.
= 8 / 3 - 1
= 8 / 2
= 4
sᴏ , x + ʏ = 4
ᴀɴᴅ ,
xʏ = 3+1/√3-1 × √3-1/√3+1
= 1
sᴏ , xʏ = 1.
ɴᴏᴡ ,
x^2 + ʏ^2
= ( x + ʏ )^2 - 2xʏ
= ( 4 )^2 - 2 × 1
= 16 - 2
= 14
•°• ᴛʜᴇ ᴠᴀʟᴜᴇ ᴏғ x^2 + ʏ^2 ɪs 14.
___________________________
ʜᴏᴘᴇ ɪᴛ ʜᴇʟᴘs ʏᴏᴜ ᴅᴇᴀʀ! :)
★ ᴅᴇᴠɪʟ ᴋɪɴɢ
ʜᴇʀᴇ's ʏᴏᴜʀ ᴀɴsᴡᴇʀ
_____________________
ɪғ ,
x = √3 + 1 / √3 - 1 ᴀɴᴅ ʏ = √3 - 1 / √3 + 1
ᴛʜᴇɴ ,
x + ʏ = √3 + 1 / √3 - 1 + √3 - 1 / √3 + 1
= ( √3 + 1 )^2 + ( √3 - 1 )^2 / ( √3 - 1 ) ( √3 + 1 )
= 3 + 2√3 + 1 + 3 - 2√3 + 1 / ( √3 )^2 - ( 1 )^2
[ °•° ( ᴀ + ʙ )^2 = ᴀ^2 + 2ᴀʙ + ʙ^2 ]--------- ( ɪ )
[ °•° ( ᴀ - ʙ )^2 = ᴀ^2 - 2ᴀʙ + ʙ^2 ]---------- ( ɪɪ )
[°•° ᴀ^2 - ʙ^2 = ( ᴀ + ʙ ) ( ᴀ - ʙ ) ]----------- ( ɪɪɪ )
★ ᴜsɪɴɢ ( ɪ ) ( ɪɪ ) ( ɪɪɪ ) ɪᴅᴇɴᴛɪᴛʏ.
= 8 / 3 - 1
= 8 / 2
= 4
sᴏ , x + ʏ = 4
ᴀɴᴅ ,
xʏ = 3+1/√3-1 × √3-1/√3+1
= 1
sᴏ , xʏ = 1.
ɴᴏᴡ ,
x^2 + ʏ^2
= ( x + ʏ )^2 - 2xʏ
= ( 4 )^2 - 2 × 1
= 16 - 2
= 14
•°• ᴛʜᴇ ᴠᴀʟᴜᴇ ᴏғ x^2 + ʏ^2 ɪs 14.
___________________________
ʜᴏᴘᴇ ɪᴛ ʜᴇʟᴘs ʏᴏᴜ ᴅᴇᴀʀ! :)
★ ᴅᴇᴠɪʟ ᴋɪɴɢ
Similar questions
Math,
7 months ago
Math,
7 months ago
Social Sciences,
1 year ago
Social Sciences,
1 year ago
Biology,
1 year ago
English,
1 year ago