Math, asked by siddhant269, 8 months ago

x^3 + 1/x^3 = ?
What is the answer

Attachments:

Answers

Answered by BrainlyPopularman
6

Question :

If    \:  \:  { \bold{x +  \dfrac{1}{x}  =  \sqrt{3} }} \:  \:  , then find   \:  \:  { \bold{x {}^{3}  +  \dfrac{1}{x {}^{3} }  =  ? }} \:  \:

ANSWER :

GIVEN :

   \\  \:  \: { \huge{.}} \:  \:  { \bold{x +  \dfrac{1}{x}  =  \sqrt{3} }} \:  \:  \\

TO FIND :

  \:  \:  { \huge{.}} \:  \: { \bold{x {}^{3}  +  \dfrac{1}{x {}^{3} }  =  ? }} \:  \:

SOLUTION :

   \\  \: \implies  \:  { \bold{x +  \dfrac{1}{x}  =  \sqrt{3} }} \:  \:   \\

• Take cube on both side –

   \\  \: \implies  \:  { (\bold{x +  \dfrac{1}{x} ) {}^{3}  =  (\sqrt{3} ) {}^{3} }} \:  \:   \\

• Using identity –

   \\  \: \longrightarrow \:  \large { \boxed{ (\bold{a+ b) {}^{3}  =   { a }^{3}  +  {b}^{3}  + 3ab(a + b)}}} \:  \:   \\

• So that –

 \\ \:  \implies  \:  { \bold{(x ) {}^{3} +  (\dfrac{1}{x}) {}^{3}  + 3(x)( \dfrac{1}{x}  ) [x +  \dfrac{1}{x} ] = ( \sqrt{3}  ) {}^{3} }} \\

 \\ \:  \implies  \:  { \bold{(x ) {}^{3} +  (\dfrac{1}{x}) {}^{3}  + 3(x +  \dfrac{1}{x})= 3 \sqrt{3}   }} \\

 \\ \:  \implies  \:  { \bold{(x ) {}^{3} +  (\dfrac{1}{x}) {}^{3}  + 3( \sqrt{3} )= 3 \sqrt{3}   }} \\

 \\ \:  \implies  \:  { \bold{x {}^{3} +  \dfrac{1}{x {}^{3} }= 3 \sqrt{3}   - 3 \sqrt{3}  }} \\

 \\ \:  \implies  \large{ \boxed  { \bold{x {}^{3} +  \dfrac{1}{x {}^{3} }= 0  }}} \\

• Hence ,   \:  \:  \: { { \bold{x {}^{3} +  \dfrac{1}{x {}^{3} }= 0  }}}

 \\ \rule{220}{2} \\

Similar questions