x=(3-2√2) show that (√x-1upon√x)=+-2
Answers
Step-by-step explanation:
Given-----> x = ( 3 - 2√2 )
To show----> ( √x - 1 / √x ) = ± 2
Solution------> ATQ,
x = ( 3 - 2√2 )
1 / x = 1 / ( 3 - 2√2 )
Multiplying by conjugate of denominator in numerator and denominator which is ( 3 + 2√2 ) .
1 / x = ( 3 + 2√2 ) / ( 3 - 2√2 ) ( 3 + 2√2 )
= ( 3 + 2√2 ) / ( 3 )² - ( 2√2 )²
= ( 3 + 2√2 ) / ( 9 - 8 )
= ( 3 + 2√2 ) / 1 p
=> 1 / x = ( 3 + 2√2 )
Now,
x + 1 / x = ( 3 - 2√2 ) + ( 3 + 2√2 )
= 6
We know that,
( a - b )² = a² + b² - 2ab , putting a = √x , b = 1 / √x , we get,
( √x - 1 / √x )² = ( √x )² + ( 1 /√x )² - 2 ( √x ) ( 1 / √x )
= ( x + 1 / x ) - 2
=> ( √x - 1 /√x )² = 6 - 2
=> (√x - 1/√x )² = 4
=> ( √x - 1/√x ) = ± 2