Math, asked by Saha1209, 6 months ago

{(x+3)/7}-{(2x-5)/3}={(3x-5)/5}-25​

Answers

Answered by Vvminkook
5

The value of x is 25.

Step-by-step explanation:

Given : Equation \frac{x+3}{7}-\frac{2x-5}{3}=\frac{3x-5}{5}-257x+3−32x−5=53x−5−25

To find : Solve the equation ?

Solution :

Equation \frac{x+3}{7}-\frac{2x-5}{3}=\frac{3x-5}{5}-257x+3−32x−5=53x−5−25

Taking LCM,

\frac{3(x+3)-7(2x-5)}{21}=\frac{3x-5-125}{5}213(x+3)−7(2x−5)=53x−5−125

\frac{3x+9-14x+35}{21}=\frac{3x-5-125}{5}213x+9−14x+35=53x−5−125

\frac{-11x+44}{21}=\frac{3x-130}{5}21−11x+44=53x−130

Cross multiply,

5(-11x+44)=21(3x-130)5(−11x+44)=21(3x−130)

-55x+220=63x-2730−55x+220=63x−2730

63x+55x=2730+22063x+55x=2730+220

118x=2950118x=2950

x=\frac{2950}{118}x=1182950

x=25x=25

Therefore, The value of x is 25.

Similar questions