{(x+3)/7}-{(2x-5)/3}={(3x-5)/5}-25
Answers
Answered by
5
The value of x is 25.
Step-by-step explanation:
Given : Equation \frac{x+3}{7}-\frac{2x-5}{3}=\frac{3x-5}{5}-257x+3−32x−5=53x−5−25
To find : Solve the equation ?
Solution :
Equation \frac{x+3}{7}-\frac{2x-5}{3}=\frac{3x-5}{5}-257x+3−32x−5=53x−5−25
Taking LCM,
\frac{3(x+3)-7(2x-5)}{21}=\frac{3x-5-125}{5}213(x+3)−7(2x−5)=53x−5−125
\frac{3x+9-14x+35}{21}=\frac{3x-5-125}{5}213x+9−14x+35=53x−5−125
\frac{-11x+44}{21}=\frac{3x-130}{5}21−11x+44=53x−130
Cross multiply,
5(-11x+44)=21(3x-130)5(−11x+44)=21(3x−130)
-55x+220=63x-2730−55x+220=63x−2730
63x+55x=2730+22063x+55x=2730+220
118x=2950118x=2950
x=\frac{2950}{118}x=1182950
x=25x=25
Therefore, The value of x is 25.
Similar questions