Math, asked by hardik098765, 5 months ago

x=3+root 8 find value of x^2 +1/x^2​

Answers

Answered by anindyaadhikari13
6

Required Answer:-

Given:

  •  \sf x = 3 +  \sqrt{8}

To Find:

  •  \sf {x}^{2}  +  \dfrac{1}{ {x}^{2} }  = \: ?

Solution:

We have,

 \sf \implies x = 3 +  \sqrt{8}

Therefore,

 \sf \implies  \dfrac{1}{x}  =  \dfrac{1}{3 +  \sqrt{8} }

 \sf \implies  \dfrac{1}{x}  =  \dfrac{1}{3 +  \sqrt{8} }  \times  \dfrac{3 -  \sqrt{8} }{3 -  \sqrt{8} }

 \sf \implies  \dfrac{1}{x}  =  \dfrac{3 -  \sqrt{8} }{ {(3)}^{2}   -  {( \sqrt{8} )}^{2} }

 \sf \implies  \dfrac{1}{x}  =  \dfrac{3 -  \sqrt{8} }{ 9 - 8 }

 \sf \implies  \dfrac{1}{x}  = 3 -  \sqrt{8}

Therefore,

 \sf \implies x +  \dfrac{1}{x}  = 3 +  \sqrt{8}  + 3 -  \sqrt{8}

 \sf \implies x +  \dfrac{1}{x}  = 6

Squaring both sides, we get,

 \sf \implies  \bigg(x +  \dfrac{1}{x}   \bigg)^{2} = 36

 \sf \implies  {x}^{2}  +  \dfrac{1}{ {x}^{2}}  + 2 \times x \times \dfrac{1}{x}  = 36

 \sf \implies  {x}^{2}  +  \dfrac{1}{ {x}^{2}}  + 2 = 36

 \sf \implies  {x}^{2}  +  \dfrac{1}{ {x}^{2}}  = 34

Hence, the value of x² + 1/x² is 34.

Answer:

  •  \sf{x}^{2}  +  \dfrac{1}{ {x}^{2}}  = 34

Identity Used:

  • (a + b)² = a² + 2ab + b²
Similar questions