Math, asked by thunderhash, 1 month ago

x^3-y^3=(x-y)(x^2+xy+y^2​

Answers

Answered by Sheg
0

Step-by-step explanation:

i feel you need to prove this.

 {(x - y)}^{3}  =  {x}^{3}  - 3 {x}^{2} y + 3x {y}^{2}  -  {y}^{3}

 \implies \:  {x}^{3}  -  {y}^{3}  =  {(x - y)}^{3}  + 3 {x}^{2} y - 3x {y}^{2}

 \implies \:  {x}^{3}  -  {y}^{3}  =  {(x - y)}^{3}  + 3xy(x - y)

 \implies \:  {x}^{3}  - {y}^{3}  = (x - y) \times ( {(x - y)}^{2}  + 3xy)

 \implies \:  {x}^{3}  - {y}^{3}  = (x - y) \times ( {x}^{2} - 2xy +  {y}^{2}   + 3xy)

 \implies \:  {x}^{3}  - {y}^{3}  = (x - y) \times ( {x}^{2}  + xy  +   {y}^{2}  )

Similar questions