Math, asked by hanonymous679, 8 months ago

x/3+y/4=11,5x/6-y/3=-7​

Answers

Answered by Anonymous
25

{ \huge{ \underline{ \green{Solution}}}}

{ \sf{ \large{The \: Equations \: Are \longrightarrow}}}

{ \sf{ \large{ \dfrac{x}{3}  +  \dfrac{y}{4}  = 11 \to \: (i)}}}

{ \sf{ \large{ \dfrac{5x}{6}   -   \dfrac{y}{3}  = ( - 7)\to \: (ii)}}}

{ \sf{ \large{Taking \: equation \:  \: (i)\longrightarrow}}}

{ \sf{ { \dfrac{x}{3}  +  \dfrac{y}{4}  = 11 }}}

{ \sf{ {  \implies \: {x}{}    = 11  -  \dfrac{y \times 3}{4} }}}

{ \sf{ \large{Taking \: equation \:  \: (ii)\longrightarrow}}}

{ \sf{ { \dfrac{5x}{6}   -   \dfrac{y}{3}  = ( - 7) }}}

{ \sf{ {  \implies\dfrac{5 }{6} (  11  -  \dfrac{y \times 3}{4} ) -    \dfrac{y}{3}  = ( - 7) }}}

{ \sf{ {  \implies\dfrac{55 }{6}  -  \dfrac{15y}{4}  -    \dfrac{y}{3}  = ( - 7) }}}

{ \sf{ {  \implies  -  \dfrac{15y}{4}  -    \dfrac{y}{3}  = ( - 7) -  \dfrac{55}{6}  }}}

{ \sf{ {  \implies    \dfrac{15y}{4}   +    \dfrac{y}{3}  =   7  +  \dfrac{55}{6}  }}}

{ \sf{ {  \implies    \dfrac{45y + 4y}{12}     =   \dfrac{42 + 55}{6}  }}}

{ \sf{ {  \implies    \dfrac{49y}{12}     =   \dfrac{97}{6}  }}}

{ \sf{ {  \implies    {49y}{}     =   \dfrac{97 \times 12}{6 }  }}}

{ \sf{ {  \implies    {49y}{}     =   \dfrac{97 \times   { \not12}^{2} }{ \not6 }  }}}

{ \sf{ {  \implies    {49y}{}     =194 } }}

{ \sf{ {  \implies    y      = 3.9 } }}

{ \sf{ \large{Taking \: equation \:  \: (i)\longrightarrow}}}

{ \sf{ { \dfrac{x}{3}  +  \dfrac{y}{4}  = 11 }}}

{ \sf{ {  \implies\dfrac{x}{3}  +  \dfrac{3.9}{4}  = 11 }}}

{ \sf{ {  \implies\dfrac{x}{3} = 11  -  \dfrac{39}{40} }}}

{ \sf{ {  \implies\dfrac{x}{3} =   \dfrac{440 - 39}{40} }}}

{ \sf{ {  \implies\dfrac{x}{3} =   \dfrac{ { \not401}^{10.02} }{ \not40} }}}

{ \sf{ {  \implies{x}{} =   {10.02}   \times 3}}}

{ \sf{ {  \implies{x}{} =  30.06}}}

{ \sf{ { So \: The \: Value \: Of \: X = 3.9 \: nd \: Y = 30.06}}}

Answered by lawal27102
2

Answer:

x = 15 ; y = 117

Step-by-step explanation:

given,

\frac{x}{3} + \frac{y}{4} = 11      ⇒ (A)

\frac{5x}{6} - \frac{y}{3} = -7\\   ⇒ (B)

Considering the equation (A),

\frac{x}{3} + \frac{y}{4} = 11

\frac{x+y}{12}  = 11

x + y = 132  ⇒ (1)

Considering the equation (B),

\frac{5x}{6} - \frac{y}{3} = -7\\

\frac{5x-y}{6} = -7

5x - y = -42  ⇒ (2)

Considering equation (1) and (2),

x + y = 132

5x - y = -42 (+)      // adding the equation (1) and (2)  

-------------------

6x = 90

-------------------

6x = 90

x = \frac{90}{6}

x = 15

Substitute x = 15 in equation (1),

x + y = 132

15 + y = 132

y = 132 - 15

y = 117

Therefore, x = 15

                  y = 117

....

Hope it helps,

Thank you!!!

Similar questions