Math, asked by 19jg1a0582anandini, 7 months ago

(x^3y^2+x)dy + (x^2y^3-y)dx =0​

Answers

Answered by pulakmath007
22

SOLUTION

TO SOLVE

 \displaystyle \sf{( {x}^{3} {y}^{2}  + x)dy + ( {x}^{2}   {y}^{3} - y)dx = 0 }

EVALUATION

 \displaystyle \sf{( {x}^{3} {y}^{2}  + x)dy + ( {x}^{2}   {y}^{3} - y)dx = 0 }

 \displaystyle \sf{ \implies \: ( {x}^{3} {y}^{2} dy +  {x}^{2}   {y}^{3} dx) = ydx - xdy}

 \displaystyle \sf{ \implies \:  {x}^{2}  {y}^{2} ( x dy +  y dx) = ydx - xdy}

 \displaystyle \sf{ \implies \:  {x}^{2}  {y}^{2} d(xy )= ydx - xdy}

Dividing both sides by xy we get

 \displaystyle \sf{ \implies \:  xy \:  d(xy )= \frac{dx}{x}   -  \frac{dy}{y} }

Let z = xy

 \displaystyle \sf{ \implies \:  z \:  dz= \frac{dx}{x}   -  \frac{dy}{y} }

On integration we get

 \displaystyle \sf{ \implies \int  z \:  dz=  \int\frac{dx}{x}   -   \int\frac{dy}{y} }

 \displaystyle \sf{ \implies  \frac{ {z}^{2} }{2} =  log(x)  -  log(y)  + c}

 \displaystyle \sf{ \implies  \frac{ {x}^{2} {y}^{2}  }{2} =  log(x)  -  log(y)  + c}

Where C is integration constant

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. The complete integral of partial differential equations√p+√q=1 is

https://brainly.in/question/26048317

2. For the differential equation xy \frac{dy}{dx}=(x+2)(y+2) , find the solution curve passing through the poin...

https://brainly.in/question/8138112

Similar questions