Math, asked by sunildeswal8901, 1 year ago

x^4+4(Factorise)
Its answer is(x^2+2x+2)(x^2-2x+2)
But don't verify only Factorise

Answers

Answered by ShuchiRecites
5
\textbf{ \huge{ Hello Mate! }}

 {x}^{4}  + 4 =  {x}^{4}  +  {2}^{2}

Now, we have to write it in a form where such how it matches the identities.

 {a}^{2}  +  { b }^{2}  =  {(a + b)}^{2}  - 2ab

So we can write it as,

 {x}^{4}  +  {2}^{2}  =  {( {x}^{2} + 2) }^{2}  - 2 {x}^{2}  \times 2 \\  =  {( {x}^{2}  + 2)}^{2}  -  {(2x)}^{2}
This meets our identity,

 {a}^{2}  -  {b}^{2}  = (a + b)(a - b)

Hence,

 = ( {x}^{2}  + 2 - 2x)( {x}^{2}  + 2 + 2x)

I hope I was succeful in soughting out you problem.

\textbf{ Have great future ahead! }
Answered by siddhartharao77
4

Method - 1:

Given Equation is x^4 + 4

Add and subtract 4x^2,we get

⇒ x^4 + 4 + 4x^2 - 4x^2

⇒ (x^4 + 4 + 4x^2) - 4x^2

⇒ (x^2 + 2)^2 - (2x)^2

We know that a^2 - b^2 = (a + b)(a - b)

⇒ (x^2 + 2 + 2x)(x^2 + 2 - 2x)

------------------------------------------------------------------------------------------------------

Method - 2:

Given Equation is x^4 + 4.

It can be written as:

⇒ x^4 - 2x^3 + 2x^3 + 4x^2 - 2x^2 - 2x^2 + 4x - 4x + 4

It can be rearranged as

⇒ x^4 - 2x^3 + 2x^2 + 2x^3 - 4x^2 + 4x + 2x^2 - 4x + 4

⇒ x^2(x^2 - 2x + 2) + 2x(x^2 - 2x + 2) + 2(x^2 - 2x + 2)

⇒ (x^2 + 2x + 2)(x^2 - 2x + 2).



Hope it helps!

Similar questions