Math, asked by neel5096, 5 months ago

x =(4-√5) find the value of (x² +1/x²)​

Answers

Answered by Anonymous
53

Answer:

Solution:-

  • Given:

➝x=(4-√5(

  • To find the value of:

➝(x²+1/x²)

  • Here:

➝ x = (4 -  \sqrt{5} )

On squaring both the sides:

➝ {x}^{2}  =  {(4 -  \sqrt{5)} }^{2}

➝ {x}^{2}  = ( {4}^{2} ) + (  { \sqrt{5} }^{2} ) - 2 \times 4 \times  \sqrt{5}

➝ {x}^{2}  = 16 + 5 - 8 \sqrt{5}

➝ {x}^{2}  = 21 + 8 \sqrt{5}

Hence the value of, x²→21+8√5

  • Again:

➝  { (\frac{1}{x}) }^{2}  =  >  \frac{1}{ {x}^{2} }  =  \frac{1}{21 + 8 \sqrt{5} }

➝ \frac{1}{ {x}^{2} }  =  \frac{1}{21 + 8 \sqrt{5} } \times  \frac{21 - 8 \sqrt{5} }{21 - 5 \sqrt{5} }

➝ \frac{1}{ {x}^{2} }  =  \frac{21 - 5 \sqrt{5} }{( {21)}^{2}  - ( {5 \sqrt{5}) }^{2}  }

➝ \frac{1}{ {x}^{2} }  =  \frac{21 - 8 \sqrt{5} }{441 -( 64 \times 5)}

➝ \frac{1}{ {x}^{2} }  =  \frac{21 - 8 \sqrt{5} }{441 - 320}

➝ \frac{1}{ {x}^{2} }  =  \frac{21 - 8 \sqrt{5} }{121}

  • Therefore:

➝ {x}^{2}  +  \frac{1}{ {x}^{2} }  = 21 + 8 \sqrt{5}  +  \frac{21 - 5 \sqrt{5} }{121}

Similar questions