x^4+x^2+1
can any one help me in factoring this maths and sorry for my bad english
Answers
Answered by
1
x⁴+ x² + 1
x⁴+ 1 + x²
Add and subtract 2(x²)(1) to make a perfect square
= (x²)² − 2(x²)(1) + 2(x²)(1) + (1)² + x²
= (x² + 1)² − 2x² + x²
= (x² + 1)² − x²
= (x² + 1)² − (x)²
Factorize as difference of 2 squares, a² − b² = (a + b)(a − b)
= [ (x² + 1) + (x) ][ (x² + 1) − (x) ]
= (x² + 1 + x)(x² + 1 − x)
= (x² + x + 1)(x² − x + 1)
Hope this helps
x⁴+ 1 + x²
Add and subtract 2(x²)(1) to make a perfect square
= (x²)² − 2(x²)(1) + 2(x²)(1) + (1)² + x²
= (x² + 1)² − 2x² + x²
= (x² + 1)² − x²
= (x² + 1)² − (x)²
Factorize as difference of 2 squares, a² − b² = (a + b)(a − b)
= [ (x² + 1) + (x) ][ (x² + 1) − (x) ]
= (x² + 1 + x)(x² + 1 − x)
= (x² + x + 1)(x² − x + 1)
Hope this helps
Bhriti182:
plz Mark my answer as a brainlist
Answered by
1
Let x2= p
Then x4= p2
x4+ x2+ 1
= p2+ p + 1
= p2+ 1 + p
= (p)2+ (1)2+ 2*p*1 - p
= (p)2+ (1)2+ 2p - p
= (p + 1)2- p
= (p + 1)2- (√p)2
= (p + 1 + √p) (p + 1 - √p)
Substituting the value of p,
( x2+ 1 + √x2) (x2+ 1 - √x2)
= (x2+ 1 +x) (x2+ 1 - x)
Then x4= p2
x4+ x2+ 1
= p2+ p + 1
= p2+ 1 + p
= (p)2+ (1)2+ 2*p*1 - p
= (p)2+ (1)2+ 2p - p
= (p + 1)2- p
= (p + 1)2- (√p)2
= (p + 1 + √p) (p + 1 - √p)
Substituting the value of p,
( x2+ 1 + √x2) (x2+ 1 - √x2)
= (x2+ 1 +x) (x2+ 1 - x)
Similar questions
Science,
8 months ago
Science,
8 months ago
English,
1 year ago
Environmental Sciences,
1 year ago
Math,
1 year ago