Math, asked by elkashjunior, 3 months ago

x - 4/x²+2x-15 dx

Integrate​

Answers

Answered by mikasa15
3

Hello there !

∫x - 4/x²+2x-15. dx

x²/2 +4 /x + 2x²/2 -15x

= x² /2 + x² + 4/x -15x

= 3x²/2 + 4/x -15x

Hope it helps you.

Answered by Anonymous
27

Given Integrand,

 \displaystyle \sf f(x) =  \int  \dfrac{x - 4}{ {x}^{2}  + 2x - 15} dx

Adding and subtracting one in denominator,

  \longrightarrow \sf \displaystyle \sf \: f(x) =  \int \dfrac{x - 4}{( {x}^{2} + 2x + 1) - 16 } dx \\  \\   \longrightarrow \sf \displaystyle \sf \: f(x) =  \int \dfrac{x - 4}{( {x}  + 1) {}^{2}  -  {4}^{2}  }dx \\  \\   \longrightarrow \sf \displaystyle \sf \: f(x) =  \int \dfrac{x - 4}{(x + 1 - 4)(x + 1 + 4) }dx \\  \\ \longrightarrow \sf \displaystyle \sf \: f(x) =  \int \dfrac{x - 4}{(x  - 3)(x + 5) }dx

Now,

 \sf \: \dfrac{x - 4}{(x  - 3)(x + 5) } =  \dfrac{a}{x + 5}  +  \dfrac{b}{x - 3}  \\  \\  \implies \sf \: x - 4 = a(x - 3) + b(x + 5)

When x = 3, b = -1/8

When x = -5, a = 8/9

Therefore,

 \longrightarrow \sf \displaystyle \sf \: f(x) =  \dfrac{8}{9}  \int \dfrac{dx}{x + 5} -  \dfrac{1}{8}  \int \dfrac{dx}{x - 3}  \\  \\ \longrightarrow \sf \displaystyle \boxed{\boxed{\sf \: f(x) =  \dfrac{8}{9}  ln(x + 5)  -  \dfrac{1}{8}  ln(x - 3)  + C}}


Atαrαh: Amazing! (*´ω`*)
Similar questions