Math, asked by Anonymous, 1 month ago

❖ᴏɴʟʏ ᴘʀᴏᴘᴇʀ ꜱᴏʟᴠᴇᴅ ᴀɴꜱᴡᴇʀ ᴡɪᴛʜ ɢᴏᴏᴅ ᴇxᴘʟᴀɴᴀɪᴏɴ ɴᴇᴇᴅᴇᴅ
❖ ɴᴏ ꜱᴘᴀᴍᴍɪɴɢ
❖ᴏɴʟʏ ꜰᴏʀ ᴍᴏᴅᴇʀᴀᴛᴏʀꜱ, ʙʀᴀɪɴʟʏ ꜱᴛᴀʀꜱ ᴀɴᴅ ᴏᴛʜᴇʀ ʙᴇꜱᴛ ᴜꜱᴇʀꜱ​

Attachments:

Answers

Answered by TrustedAnswerer19
83

Method -1:

{\boxed{\boxed{\begin{array}{cc}\bf \: \to \: \: given : \\  \\  \displaystyle \lim_{ \rm \: x \to \:    - 2}  \: \rm \: \left(  \frac{ \sqrt{x + 6} - 2 }{x + 2} \right) \\  \\ \small{  \sf \: if \: we \: apply \: limit \: we \: will \: get \:  \frac{0}{0} \:  \: form} \\  \sf \: which \:  is \: undefined.\\   \\ \bf \: so \: simplify \: the \: limit  \\  \\  = \displaystyle \lim_{ \rm \: x \to \:     - 2}  \: \rm \: \left(  \frac{( \sqrt{x + 6} - 2)( \sqrt{x + 6}   + 2)}{(x + 2)( \sqrt{x + 6} + 2) } \right) \\  \\  = \displaystyle \lim_{ \rm \: x \to \:    - 2}  \: \rm \: \left(  \frac{( { \sqrt{x + 6} })^{2}  -  {2}^{2} }{(x + 2)( \sqrt{x + 6}  + 2)} \right) \\  \\  = \displaystyle \lim_{ \rm \: x \to \:    - 2}  \: \rm \: \left(  \frac{x + 6 - 4}{(x + 2)( \sqrt{x + 6} + 2) } \right) \\  \\  = \displaystyle \lim_{ \rm \: x \to \:    - 2}  \: \rm \: \left(  \frac{ \cancel{(x + 2)}}{ \cancel{(x + 2)}( \sqrt{x + 6} + 2) } \right) \\  \\  = \displaystyle \lim_{ \rm \: x \to \:    - 2}  \: \rm \: \left(  \frac{1}{ \sqrt{x + 6}   + 2} \right) \\  \\  \bf \: apply \: limit \\  \\   =  \frac{1}{ \sqrt{ - 2 + 6} + 2 } \\  \\  =   \frac{1}{ \sqrt{4}  + 2}  \\  \\  =  \frac{1}{2 + 2}  \\  \\  =  \frac{1}{4}   \\  \\  \\  \blue{ \boxed{ \therefore \: \displaystyle \lim_{ \rm \: x \to \:    - 2}  \: \rm \: \left( \frac{ \sqrt{x + 6}  - 2}{x + 2}  \right) =  \frac{1}{4} }}\end{array}}}}

Method -2: La'Hospital rule

Rule: L'Hospital's Rule tells us that if we have an indeterminate form 0/0 or ∞/∞ all we need to do is differentiate the numerator and differentiate the denominator and then take the limit.

 \orange{\boxed{\boxed{\begin{array}{cc}\bf \: \to \:given :  \\  \\ \displaystyle \lim_{ \rm \: x \to \:    - 2}  \: \rm \: \left(  \frac{ \sqrt{x + 6} - 2 }{x + 2} \right) \\  \\  = \displaystyle \lim_{ \rm \: x \to \:    - 2}  \: \rm \: \left(  \frac{\frac{d}{dx} ( \sqrt{x + 6}   - 2)}{ \frac{d}{dx}(x + 2) }\right) \\  \\  = \displaystyle \lim_{ \rm \: x \to \:    - 2}  \: \rm \: \left(  \frac{ \frac{d}{dx} \sqrt{x + 6}   -  \frac{d}{dx} 2}{ \frac{d}{dx}x  +  \frac{d}{dx}2  } \right) \\  \\  = \displaystyle \lim_{ \rm \: x \to \:    - 2}  \: \rm \: \left( \frac{ \frac{1}{2 \sqrt{x + 6}}. \frac{d}{dx}(x + 6)   - 0}{1 + 0}  \right) \\  \\  = \displaystyle \lim_{ \rm \: x \to \:    - 2}  \: \rm \: \left( \frac{1}{2 \sqrt{x + 6} }   \times 1\right) \\  \\  =  \frac{1}{2 \sqrt{ - 2 + 6} }  \\  \\  =  \frac{1}{2 \sqrt{4} } \\  \\  =  \frac{1}{2 \times 2}  \\  \\  =  \frac{1}{4}  \\  \\  \\  \blue{ \boxed{ \therefore \: \displaystyle \lim_{ \rm \: x \to \:    - 2}  \: \rm \: \left(  \frac{ \sqrt{x + 6}  - 2}{x + 2} \right) =  \frac{1}{4} }} \end{array}}}}

Similar questions