Math, asked by Anonymous, 1 month ago

❖ᴏɴʟʏ ᴘʀᴏᴘᴇʀ ꜱᴏʟᴠᴇᴅ ᴀɴꜱᴡᴇʀ ᴡɪᴛʜ ɢᴏᴏᴅ ᴇxᴘʟᴀɴᴀɪᴏɴ ɴᴇᴇᴅᴇᴅ
❖ ɴᴏ ꜱᴘᴀᴍᴍɪɴɢ
❖ᴏɴʟʏ ꜰᴏʀ ᴍᴏᴅᴇʀᴀᴛᴏʀꜱ, ʙʀᴀɪɴʟʏ ꜱᴛᴀʀꜱ ᴀɴᴅ ᴏᴛʜᴇʀ ʙᴇꜱᴛ ᴜꜱᴇʀꜱ​

Attachments:

Answers

Answered by TrustedAnswerer19
39

{\boxed{\boxed{\begin{array}{cc}\bf \: \to \:given :  \\  \\  \odot \:  \displaystyle \int_ {0}^{3} \rm \:f(x) \: dx = 6 \:  \:  \:  -  -  - (1) \\  \\  \odot \: \displaystyle \int_ {3}^{5} \rm \:f(x) \: dx = 4 \:  \:  \:  -  -  - (2) \\  \\  \blue{ \underline{ \sf \: we \: have \: to \: find : \:  }}  \\  \\ \displaystyle \int_ {0}^{5} \rm \:(3 + 2 \: f(x)) \: dx = \:  ?\end{array}}}}

{\boxed{\boxed{\begin{array}{cc} \red{ \underline{\bf \: solution}} \\  \\ \displaystyle \int_ {0}^{5} \rm \:(3 + 2 \: f(x)) \: dx \\  \\   = \displaystyle \int_ {0}^{5} \rm \:3 \: dx + \displaystyle \int_ {0}^{5} \rm \:2 \: f(x) \: dx \\  \\  = { \huge{[}}3x{ \huge{]}}_0^5 + 2\displaystyle \int_ {0}^{5} \rm \:f(x) \: dx \\  \\ \orange{{\boxed{\begin{array}{cc}\bf \: \to \:we \: know :  \\  \\ \displaystyle \int_ {a}^{c} \rm \:f(x) \: dx = \displaystyle \int_ {a}^{b} \rm \:f(x) \: dx + \displaystyle \int_ {b}^{c} \rm \:f(x) \: dx\end{array}}}} \\  \\  = (3 \times 5 - 3 \times 0) + 2   \left(\displaystyle \int_ {0}^{3} \rm \:f(x) \: dx + \displaystyle \int_ {3}^{5} \rm \:f(x) \: dx \right) \\  \\  = 15 + 2(6 + 4) \\  \\  \orange{ \boxed{ \bf \: by \: eqn.(1) \:  \: and \: (2) }} \\  \\  = 15 + 2 \times 10 \\  \\  = 15 + 20 \\  \\  = 35\end{array}}}}

 \orange{ \boxed{ \therefore \displaystyle \int_ {0}^{5} \rm \:(3 + 2 \: f(x)) \: dx = 35}}

Answered by mathdude500
21

Given Question :-

If \: \displaystyle\int_0^3\sf f(x)dx = 6 \: and \: \displaystyle\int_3^5\sf f(x)dx = 4, \: then \: \displaystyle\int_0^5\sf (3 + 2f(x))dx =  -  -  -

 \green{\large\underline{\sf{Solution-}}}

Given that,

\rm :\longmapsto\: \displaystyle\int_0^3\sf f(x)dx = 6 \:

and

\rm :\longmapsto\:\displaystyle\int_3^5\sf f(x)dx = 4

Consider,

\rm :\longmapsto\:\displaystyle\int_0^5\sf (3 + 2f(x)) \: dx

can be rewritten as

\rm \:  =  \: \displaystyle\int_0^5\sf 3 \: dx + 2\displaystyle\int_0^5\sf f(x) \: dx

\rm \:  =  \:3 \displaystyle\int_0^5\sf  \: dx + 2\bigg(\displaystyle\int_0^3\sf f(x) \: dx + \displaystyle\int_3^5\sf f(x)dx\bigg)

We know,

\boxed{ \tt{ \: \displaystyle\int\sf \: k \: dx \:  =  \: kx \:  +  \: c \: }}

So, using this, we get

\rm \:  =  \: 3\bigg(x \bigg) _0^5\sf  + 2(6 + 4)

\rm \:  =  \: 3(5 - 0) + 2(10)

\rm \:  =  \: 15 + 20

\rm \:  =  \: 35

Hence,

 \purple{\rm \implies\:\boxed{ \tt{ \: \displaystyle\int_0^5\sf (3 + 2f(x)) \: dx \:  =  \: 35 \: }}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

 \pink{\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}}

Properties of Definite integrals

\boxed{ \tt{ \: \displaystyle\int_a^b\sf f(x) dx \: = \: \displaystyle\int_a^b\sf f(y) dy \: }}

\boxed{ \tt{ \: \displaystyle\int_a^b\sf f(x) dx \: = \: -  \:  \displaystyle\int_b^a\sf f(x) dx \: }}

\boxed{ \tt{ \: \displaystyle\int_0^a\sf f(x) dx \:  =  \: \displaystyle\int_0^a\sf f(a - x) dx \: }}

\boxed{ \tt{ \: \displaystyle\int_a^b\sf f(x) dx \:  =  \: \displaystyle\int_a^b\sf f(a  + b- x) dx \: }}

\boxed{ \tt{ \: \displaystyle\int_0^{2a}\sf f(x) dx \:  = 2 \: \displaystyle\int_0^a\sf f(x) dx \:if \: f(2a - x) = f(x) }}

\boxed{ \tt{ \: \displaystyle\int_0^{2a}\sf f(x) dx \:  = 0 \:if \: f(2a - x) =  - f(x) }}

Similar questions