Math, asked by pateldaksh182, 3 months ago

x+4y=45;–3+5y=120 find the solution set​

Answers

Answered by 12thpáìn
89

Given Equation Are :-

  • x+4y=45 _____(1)
  • -3x+5y= 120. _____(2)

Multiplying equation (1) with 5 we get,

{\implies \sf(5 \times x) + (5 \times 4y) = 45 \times 5}

{\implies \sf5x+ 20y=225} \:  \:  \:  \:  \:  -  -  - (3)

Multiple Equation (2) with 4 we get,

 {\implies \sf - 3x \times 4 + 5y \times 4 = 120 \times 4}

 {\implies \sf - 12x +20y = 480}\:  \:  \:  \:  \:  -  -  - (4)

Subtracting equation (4) from (3), we get

  •  \sf \: \:  \:  \:  \:  5x + 20y = 225 \\ \sf  - 12x + 20y = 480  \\  \underline{ \sf   \:   + \:  \:   \:  \:  \:  \:  \:  \:  -  \:  \:  \:  \:  \:  \:  \:  \:  =  -   \:  \:  \:} \\  \sf - 17x \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  - 225 \\ \sf \: x =  \frac{225}{17}  \\ \:  \sf \   \:  \:  \:  \: x = 15 \:  \:  \:  \:  \:  \:  \:   \:

Substituting x= 15 in Equation (1) We get,

\implies \sf \: 15 + 4y = 45 \\ \implies \sf \: 4y =  45 - 15 \\\implies \sf4y = 30 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\\implies  \sf \: y =  \frac{30}{4}  \:  \:  \:  \:  \:  \:  \:  \:    \\\implies \sf y =  \frac{15}{2}  \:  \:  \:  \:  \:  \:  \:  \:

  • \underline{\green{  \boxed{\sf \: Correct  \: Answer=  \left(15 , \dfrac{15}{2}  \right)}}}
Similar questions