Math, asked by karthikguttu, 6 months ago

x=5+2√6 then x+1/x=
find the​

Answers

Answered by Bidikha
4

Given -

x = 5 + 2 \sqrt{6}

To find -

x +  \frac{1}{x}  =?

Solution -

 \implies x = 5 + 2 \sqrt{6}

 \implies \frac{1}{x}  =  \frac{1}{5 + 2 \sqrt{6} }

By rationalising the denominator we will get -

 \implies \frac{1}{x}  =  \frac{5 - 2 \sqrt{6} }{(5 + 2 \sqrt{6})(5 - 2 \sqrt{6}  )}

\implies \frac{1}{x}  =  \frac{5  - 2 \sqrt{6} }{ {(5)}^{2} -  {(2 \sqrt{6}) }^{2}  }

\implies \frac{1}{x}  =  \frac{5 - 2 \sqrt{6} }{25 - 24}

\implies \frac{1}{x}  =  \frac{5 - 2 \sqrt{6} }{1}

\implies \frac{1}{x}  = 5 - 2 \sqrt{6}

Now,

 = x +  \frac{1}{x}

Putting the values we will get -

 = 5 + 2 \sqrt{6}  + 5 - 2 \sqrt{6}

 = 5 + 5

 = 10

Therefore the value of  x+\frac{1}{x} is 10

Similar questions