Math, asked by riyakundu455, 1 year ago

x^5 sinx (tanx+cosecx) differentiate w.r.t. x​

Answers

Answered by MaheswariS
0

Let\;y=x^5 sinx (tanx+cosecx)

Using product rule of differentiation

\boxed{\bf\frac{d(uvw)}{dx}=\frac{du}{dx}\;v\;w+u\;\frac{dv}{dx}\;w+u\;v\;\frac{dw}{dx}}

\frac{dy}{dx}=\frac{d(x^5)}{dx}\;sinx\;(tanx+cotx)+x^5\;\frac{d(sinx)}{dx}\;(tanx+cotx)+x^5\;sinx\;\frac{d(tanx+cotx)}{dx}}

\frac{dy}{dx}=5x^4\;sinx\;(tanx+cotx)+x^5\;cosx\;(tanx+cotx)+x^5\;sinx\;(sec^2x-cosec^2x)

\frac{dy}{dx}=5x^4\;sinx\;(\frac{sinx}{cosx}+\frac{cosx}{sinx})+x^5\;cosx\;(\frac{sinx}{cosx}+\frac{cosx}{sinx})+x^5\;sinx\;(sec^2x-cosec^2x)

\frac{dy}{dx}=5x^4\;sinx\;\frac{1}{cosx\;sinx}+x^5\;cosx\;\frac{1}{cosx\;sinx}+x^5\;sinx\;(sec^2x-cosec^2x)

\frac{dy}{dx}=\frac{5x^4}{cosx}+\frac{x^5}{sinx}+x^5\;sinx\;sec^2x-x^5\;sinx\;cosec^2x

\frac{dy}{dx}=5x^4\;secx+x^5\;cosecx+x^5\;tanx\;secx-x^5\;cosecx

\frac{dy}{dx}=5x^4\;secx+x^5\;tanx\;secx

\implies\bf\frac{dy}{dx}=x^4\;secx[5+x\;tanx]

Similar questions