Math, asked by abhi3363, 1 year ago

X=a+b y=aw+bw^2 z=aw+bw^2 omega is cube root of unity calculate xyz

Answers

Answered by MaheswariS
13

Answer:

\bf\;xyx=a^3+b^3

Step-by-step explanation:

Concept:

\text{If $\omega$ is a cube root of unity, then}\\\\\bf{\omega}^3=1\;\;and\;\;1+\omega+{\omega}^2=0

Given:

x=a+b

y=a\omega+b{\omega}^2

z=a{\omega}^2+b\omega

xyx=(a+b)(a\omega+b{\omega}^2)(a{\omega}^2+b\omega)

xyx=(a+b)(a^2{\omega}^3+ab{\omega}^2+ab{\omega}^4+b^2{\omega}^3)

Using \boxed{\bf{\omega}^3=1}

xyx=(a+b)(a^2(1)+ab({\omega}^2+{\omega})+b^2(1))

Using \boxed{\bf\;1+{\omega}+{\omega}^2=0\implies\;\;{\omega}+{\omega}^2=-1}

xyx=(a+b)(a^2+ab(-1)+b^2)

xyx=(a+b)(a^2-ab+b^2)

\implies\boxed{\bf\;xyx=a^3+b^3}

Answered by sivasridhar
5

Answer:

yes the above and is correct

Step-by-step explanation:

see the above and and mark me as brainalist

Similar questions