x=a(cosθ+θsinθ), y=a(sinθ-θcosθ),Find dy/dx :(Wherever y is defined as a function of x and dx/dt or dx/dθ≠0)
Answers
Answered by
13
x = a(cosθ + θsinθ)
differentiate with respect to θ,
dx/dθ = d{a(cosθ + θsinθ)}/dθ
= a[d(cosθ)/dθ + d(θsinθ)/dθ]
= a[ -sinθ + θ.cosθ + sinθ]
= aθ.cosθ ........(1)
again, y = a(sinθ - θ.cosθ)
differentiate with respect to θ,
dy/dθ = d{a(sinθ - θcosθ)}/dθ
= a[dsinθ/dθ - d(θ.cosθ)/dθ ]
= a[cosθ - θ(-sinθ) - cosθ ]
= a[ cosθ + θsinθ - cosθ]
= aθ.sinθ ...........(2)
now, dy/dx = {dy/dθ}/{dx/dθ}
= aθ.sinθ/aθ.cosθ
= tanθ
hence, dy/dx = tanθ
differentiate with respect to θ,
dx/dθ = d{a(cosθ + θsinθ)}/dθ
= a[d(cosθ)/dθ + d(θsinθ)/dθ]
= a[ -sinθ + θ.cosθ + sinθ]
= aθ.cosθ ........(1)
again, y = a(sinθ - θ.cosθ)
differentiate with respect to θ,
dy/dθ = d{a(sinθ - θcosθ)}/dθ
= a[dsinθ/dθ - d(θ.cosθ)/dθ ]
= a[cosθ - θ(-sinθ) - cosθ ]
= a[ cosθ + θsinθ - cosθ]
= aθ.sinθ ...........(2)
now, dy/dx = {dy/dθ}/{dx/dθ}
= aθ.sinθ/aθ.cosθ
= tanθ
hence, dy/dx = tanθ
Answered by
7
HELLO DEAR,
GIVEN:-
x = a(cosθ + θsinθ)
differentiate x w.r.t θ,
dx/dθ = d{a(cosθ + θsinθ)}/dθ
= a[d(cosθ)/dθ + d(θsinθ)/dθ]
= a[ -sinθ + θcosθ + sinθ]
= aθcosθ -----------( 1 )
AND,
y = a(sinθ - θcosθ)
differentiate with respect to θ,
dy/dθ = d{a(sinθ - θcosθ)}/dθ
= a[dsinθ/dθ - d(θcosθ)/dθ ]
= a[cosθ - θ(-sinθ) - cosθ ]
= a[ cosθ + θsinθ - cosθ]
= aθsinθ ----------( 2 )
now,
divide-------( 1 ) by -----( 2 )
dy/dx = {dy/dθ}/{dx/dθ}
= {aθsinθ}/{aθcosθ}
= tanθ
therefore,dy/dx = tanθ
I HOPE ITS HELP YOU DEAR,
THANKS
GIVEN:-
x = a(cosθ + θsinθ)
differentiate x w.r.t θ,
dx/dθ = d{a(cosθ + θsinθ)}/dθ
= a[d(cosθ)/dθ + d(θsinθ)/dθ]
= a[ -sinθ + θcosθ + sinθ]
= aθcosθ -----------( 1 )
AND,
y = a(sinθ - θcosθ)
differentiate with respect to θ,
dy/dθ = d{a(sinθ - θcosθ)}/dθ
= a[dsinθ/dθ - d(θcosθ)/dθ ]
= a[cosθ - θ(-sinθ) - cosθ ]
= a[ cosθ + θsinθ - cosθ]
= aθsinθ ----------( 2 )
now,
divide-------( 1 ) by -----( 2 )
dy/dx = {dy/dθ}/{dx/dθ}
= {aθsinθ}/{aθcosθ}
= tanθ
therefore,dy/dx = tanθ
I HOPE ITS HELP YOU DEAR,
THANKS
Similar questions