x=a(cost+log tan t/2), y= asint,Find dy/dx :(Wherever y is defined as a function of x and dx/dt or dx/dθ≠0)
Answers
Answered by
59
x = a(cost + log tant/2)
differentiate with respect to t,
dx/dt = d{a(cost + logtan t/2)}/dt
= a[d(cost)/dt + d(logtan t/2)/dt]
= a[ -sint + 1/tan t/2 × sec²t/2× 1/2]
= a [ -sint + 1/{2sin t/2.cos t/2} ]
we know, 2sinA.cosA = sin2A , use it here
= a [ -sint + 1/sint]
= a { 1 - sin²t}/sint
= acos²t/sint
= acott. cost .......(1)
again, y = asint
dy/dt = acost .......(2)
now, dy/dx = {dy/dt}/{dx/dt}
= {acost}{acott.cost}
= 1/cott
hence, dy/dx = tan t
differentiate with respect to t,
dx/dt = d{a(cost + logtan t/2)}/dt
= a[d(cost)/dt + d(logtan t/2)/dt]
= a[ -sint + 1/tan t/2 × sec²t/2× 1/2]
= a [ -sint + 1/{2sin t/2.cos t/2} ]
we know, 2sinA.cosA = sin2A , use it here
= a [ -sint + 1/sint]
= a { 1 - sin²t}/sint
= acos²t/sint
= acott. cost .......(1)
again, y = asint
dy/dt = acost .......(2)
now, dy/dx = {dy/dt}/{dx/dt}
= {acost}{acott.cost}
= 1/cott
hence, dy/dx = tan t
rohitkumargupta:
correct your answer bro
Answered by
33
HELLO DEAR,
GIVEN:-
x = a(cost + log tant/2)
differentiate x w.r.t t
dx/dt = d{a(cost + logtan t/2)}/dt
= a[d(cost)/dt + d(logtan t/2)/dt]
= a[ -sint + 1/2 × 1/tan(t/2) × sec²(t/2)]
= a[ -sint + 1/{2sin t/2.cos t/2} ]
we know, sin2x = 2sinxcosx
= a[ -sint + 1/sint]
= a{ 1 - sin²t}/sint
= acos²t/sint
= acot t . cost----------( 1 )
AND,
y = asint
dy/dt = acost ------------( 2 )
now,
divide-----( 1 ) by -----( 2 )
dy/dx = {dy/dt}/{dx/dt}
=> {acost}/{acot t . cost}
=> 1/cot t
=> dy/dx = tan t
I HOPE ITS HELP YOU DEAR,
THANKS
GIVEN:-
x = a(cost + log tant/2)
differentiate x w.r.t t
dx/dt = d{a(cost + logtan t/2)}/dt
= a[d(cost)/dt + d(logtan t/2)/dt]
= a[ -sint + 1/2 × 1/tan(t/2) × sec²(t/2)]
= a[ -sint + 1/{2sin t/2.cos t/2} ]
we know, sin2x = 2sinxcosx
= a[ -sint + 1/sint]
= a{ 1 - sin²t}/sint
= acos²t/sint
= acot t . cost----------( 1 )
AND,
y = asint
dy/dt = acost ------------( 2 )
now,
divide-----( 1 ) by -----( 2 )
dy/dx = {dy/dt}/{dx/dt}
=> {acost}/{acot t . cost}
=> 1/cot t
=> dy/dx = tan t
I HOPE ITS HELP YOU DEAR,
THANKS
Similar questions